Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpolydiflem Structured version   Unicode version

Theorem bpolydiflem 26105
Description: Lemma for bpolydif 26106. (Contributed by Scott Fenton, 12-Jun-2014.)
Hypotheses
Ref Expression
bpolydiflem.1  |-  ( ph  ->  N  e.  NN )
bpolydiflem.2  |-  ( ph  ->  X  e.  CC )
bpolydiflem.3  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( k BernPoly  ( X  +  1 ) )  -  ( k BernPoly  X
) )  =  ( k  x.  ( X ^ ( k  - 
1 ) ) ) )
Assertion
Ref Expression
bpolydiflem  |-  ( ph  ->  ( ( N BernPoly  ( X  +  1 ) )  -  ( N BernPoly  X ) )  =  ( N  x.  ( X ^ ( N  - 
1 ) ) ) )
Distinct variable groups:    k, N    ph, k    k, X

Proof of Theorem bpolydiflem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 bpolydiflem.1 . . . . 5  |-  ( ph  ->  N  e.  NN )
21nnnn0d 10279 . . . 4  |-  ( ph  ->  N  e.  NN0 )
3 bpolydiflem.2 . . . . 5  |-  ( ph  ->  X  e.  CC )
4 peano2cn 9243 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  1 )  e.  CC )
53, 4syl 16 . . . 4  |-  ( ph  ->  ( X  +  1 )  e.  CC )
6 bpolyval 26100 . . . 4  |-  ( ( N  e.  NN0  /\  ( X  +  1
)  e.  CC )  ->  ( N BernPoly  ( X  +  1 ) )  =  ( ( ( X  +  1 ) ^ N )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) ) ) )
72, 5, 6syl2anc 644 . . 3  |-  ( ph  ->  ( N BernPoly  ( X  +  1 ) )  =  ( ( ( X  +  1 ) ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) ) ) )
8 bpolyval 26100 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
92, 3, 8syl2anc 644 . . 3  |-  ( ph  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
107, 9oveq12d 6102 . 2  |-  ( ph  ->  ( ( N BernPoly  ( X  +  1 ) )  -  ( N BernPoly  X ) )  =  ( ( ( ( X  +  1 ) ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) ) )  -  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) ) )
115, 2expcld 11528 . . 3  |-  ( ph  ->  ( ( X  + 
1 ) ^ N
)  e.  CC )
12 fzfid 11317 . . . 4  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
13 elfzelz 11064 . . . . . . 7  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  ZZ )
14 bccl 11618 . . . . . . 7  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
152, 13, 14syl2an 465 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  _C  k )  e. 
NN0 )
1615nn0cnd 10281 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  _C  k )  e.  CC )
17 elfznn0 11088 . . . . . . 7  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
18 bpolycl 26103 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( X  +  1
)  e.  CC )  ->  ( k BernPoly  ( X  +  1 ) )  e.  CC )
1917, 5, 18syl2anr 466 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
k BernPoly  ( X  +  1 ) )  e.  CC )
20 fzssp1 11100 . . . . . . . . . . 11  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
211nncnd 10021 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
22 ax-1cn 9053 . . . . . . . . . . . . 13  |-  1  e.  CC
23 npcan 9319 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2421, 22, 23sylancl 645 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2524oveq2d 6100 . . . . . . . . . . 11  |-  ( ph  ->  ( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
2620, 25syl5sseq 3398 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
2726sselda 3350 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  ( 0 ... N
) )
28 fznn0sub 11090 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
2927, 28syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  k )  e.  NN0 )
30 nn0p1nn 10264 . . . . . . . 8  |-  ( ( N  -  k )  e.  NN0  ->  ( ( N  -  k )  +  1 )  e.  NN )
3129, 30syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  k
)  +  1 )  e.  NN )
3231nncnd 10021 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  k
)  +  1 )  e.  CC )
3331nnne0d 10049 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  k
)  +  1 )  =/=  0 )
3419, 32, 33divcld 9795 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) )  e.  CC )
3516, 34mulcld 9113 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) )  e.  CC )
3612, 35fsumcl 12532 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
373, 2expcld 11528 . . 3  |-  ( ph  ->  ( X ^ N
)  e.  CC )
38 bpolycl 26103 . . . . . . 7  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
3917, 3, 38syl2anr 466 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
k BernPoly  X )  e.  CC )
4039, 32, 33divcld 9795 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) )  e.  CC )
4116, 40mulcld 9113 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  e.  CC )
4212, 41fsumcl 12532 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
4311, 36, 37, 42sub4d 9465 . 2  |-  ( ph  ->  ( ( ( ( X  +  1 ) ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) ) )  -  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )  =  ( ( ( ( X  +  1 ) ^ N )  -  ( X ^ N ) )  -  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) ) ) )
44 addcom 9257 . . . . . . . . . . 11  |-  ( ( X  e.  CC  /\  1  e.  CC )  ->  ( X  +  1 )  =  ( 1  +  X ) )
453, 22, 44sylancl 645 . . . . . . . . . 10  |-  ( ph  ->  ( X  +  1 )  =  ( 1  +  X ) )
4645oveq1d 6099 . . . . . . . . 9  |-  ( ph  ->  ( ( X  + 
1 ) ^ N
)  =  ( ( 1  +  X ) ^ N ) )
47 binom1p 12615 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  X ) ^ N
)  =  sum_ m  e.  ( 0 ... N
) ( ( N  _C  m )  x.  ( X ^ m
) ) )
483, 2, 47syl2anc 644 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  +  X ) ^ N
)  =  sum_ m  e.  ( 0 ... N
) ( ( N  _C  m )  x.  ( X ^ m
) ) )
4946, 48eqtrd 2470 . . . . . . . 8  |-  ( ph  ->  ( ( X  + 
1 ) ^ N
)  =  sum_ m  e.  ( 0 ... N
) ( ( N  _C  m )  x.  ( X ^ m
) ) )
50 nn0uz 10525 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
512, 50syl6eleq 2528 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
52 bccl2 11619 . . . . . . . . . . . 12  |-  ( m  e.  ( 0 ... N )  ->  ( N  _C  m )  e.  NN )
5352adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  ( N  _C  m )  e.  NN )
5453nncnd 10021 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  ( N  _C  m )  e.  CC )
55 elfznn0 11088 . . . . . . . . . . 11  |-  ( m  e.  ( 0 ... N )  ->  m  e.  NN0 )
56 expcl 11404 . . . . . . . . . . 11  |-  ( ( X  e.  CC  /\  m  e.  NN0 )  -> 
( X ^ m
)  e.  CC )
573, 55, 56syl2an 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  ( X ^ m )  e.  CC )
5854, 57mulcld 9113 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( N  _C  m
)  x.  ( X ^ m ) )  e.  CC )
59 oveq2 6092 . . . . . . . . . 10  |-  ( m  =  N  ->  ( N  _C  m )  =  ( N  _C  N
) )
60 oveq2 6092 . . . . . . . . . 10  |-  ( m  =  N  ->  ( X ^ m )  =  ( X ^ N
) )
6159, 60oveq12d 6102 . . . . . . . . 9  |-  ( m  =  N  ->  (
( N  _C  m
)  x.  ( X ^ m ) )  =  ( ( N  _C  N )  x.  ( X ^ N
) ) )
6251, 58, 61fsumm1 12542 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  (
0 ... N ) ( ( N  _C  m
)  x.  ( X ^ m ) )  =  ( sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m
) )  +  ( ( N  _C  N
)  x.  ( X ^ N ) ) ) )
63 bcnn 11608 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
642, 63syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( N  _C  N
)  =  1 )
6564oveq1d 6099 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  _C  N )  x.  ( X ^ N ) )  =  ( 1  x.  ( X ^ N
) ) )
6637mulid2d 9111 . . . . . . . . . 10  |-  ( ph  ->  ( 1  x.  ( X ^ N ) )  =  ( X ^ N ) )
6765, 66eqtrd 2470 . . . . . . . . 9  |-  ( ph  ->  ( ( N  _C  N )  x.  ( X ^ N ) )  =  ( X ^ N ) )
6867oveq2d 6100 . . . . . . . 8  |-  ( ph  ->  ( sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m ) )  +  ( ( N  _C  N )  x.  ( X ^ N
) ) )  =  ( sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m ) )  +  ( X ^ N ) ) )
6949, 62, 683eqtrd 2474 . . . . . . 7  |-  ( ph  ->  ( ( X  + 
1 ) ^ N
)  =  ( sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^
m ) )  +  ( X ^ N
) ) )
7069oveq1d 6099 . . . . . 6  |-  ( ph  ->  ( ( ( X  +  1 ) ^ N )  -  ( X ^ N ) )  =  ( ( sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^
m ) )  +  ( X ^ N
) )  -  ( X ^ N ) ) )
7126sselda 3350 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 0 ... ( N  -  1 ) ) )  ->  m  e.  ( 0 ... N
) )
7271, 58syldan 458 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  _C  m
)  x.  ( X ^ m ) )  e.  CC )
7312, 72fsumcl 12532 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  (
0 ... ( N  - 
1 ) ) ( ( N  _C  m
)  x.  ( X ^ m ) )  e.  CC )
7473, 37pncand 9417 . . . . . 6  |-  ( ph  ->  ( ( sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m
) )  +  ( X ^ N ) )  -  ( X ^ N ) )  =  sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m ) ) )
7570, 74eqtrd 2470 . . . . 5  |-  ( ph  ->  ( ( ( X  +  1 ) ^ N )  -  ( X ^ N ) )  =  sum_ m  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m ) ) )
76 nnm1nn0 10266 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
771, 76syl 16 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
7877, 50syl6eleq 2528 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= ` 
0 ) )
79 oveq2 6092 . . . . . . 7  |-  ( m  =  ( N  - 
1 )  ->  ( N  _C  m )  =  ( N  _C  ( N  -  1 ) ) )
80 oveq2 6092 . . . . . . 7  |-  ( m  =  ( N  - 
1 )  ->  ( X ^ m )  =  ( X ^ ( N  -  1 ) ) )
8179, 80oveq12d 6102 . . . . . 6  |-  ( m  =  ( N  - 
1 )  ->  (
( N  _C  m
)  x.  ( X ^ m ) )  =  ( ( N  _C  ( N  - 
1 ) )  x.  ( X ^ ( N  -  1 ) ) ) )
8278, 72, 81fsumm1 12542 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
0 ... ( N  - 
1 ) ) ( ( N  _C  m
)  x.  ( X ^ m ) )  =  ( sum_ m  e.  ( 0 ... (
( N  -  1 )  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m
) )  +  ( ( N  _C  ( N  -  1 ) )  x.  ( X ^ ( N  - 
1 ) ) ) ) )
8322a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
8421, 83, 83subsub4d 9447 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  ( 1  +  1 ) ) )
85 df-2 10063 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
8685oveq2i 6095 . . . . . . . . 9  |-  ( N  -  2 )  =  ( N  -  (
1  +  1 ) )
8784, 86syl6eqr 2488 . . . . . . . 8  |-  ( ph  ->  ( ( N  - 
1 )  -  1 )  =  ( N  -  2 ) )
8887oveq2d 6100 . . . . . . 7  |-  ( ph  ->  ( 0 ... (
( N  -  1 )  -  1 ) )  =  ( 0 ... ( N  - 
2 ) ) )
8988sumeq1d 12500 . . . . . 6  |-  ( ph  -> 
sum_ m  e.  (
0 ... ( ( N  -  1 )  - 
1 ) ) ( ( N  _C  m
)  x.  ( X ^ m ) )  =  sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m ) ) )
90 bcnm1 25206 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  _C  ( N  - 
1 ) )  =  N )
912, 90syl 16 . . . . . . 7  |-  ( ph  ->  ( N  _C  ( N  -  1 ) )  =  N )
9291oveq1d 6099 . . . . . 6  |-  ( ph  ->  ( ( N  _C  ( N  -  1
) )  x.  ( X ^ ( N  - 
1 ) ) )  =  ( N  x.  ( X ^ ( N  -  1 ) ) ) )
9389, 92oveq12d 6102 . . . . 5  |-  ( ph  ->  ( sum_ m  e.  ( 0 ... ( ( N  -  1 )  -  1 ) ) ( ( N  _C  m )  x.  ( X ^ m ) )  +  ( ( N  _C  ( N  - 
1 ) )  x.  ( X ^ ( N  -  1 ) ) ) )  =  ( sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m ) )  +  ( N  x.  ( X ^ ( N  -  1 ) ) ) ) )
9475, 82, 933eqtrd 2474 . . . 4  |-  ( ph  ->  ( ( ( X  +  1 ) ^ N )  -  ( X ^ N ) )  =  ( sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m
) )  +  ( N  x.  ( X ^ ( N  - 
1 ) ) ) ) )
95 oveq2 6092 . . . . . . . . 9  |-  ( k  =  0  ->  ( N  _C  k )  =  ( N  _C  0
) )
96 oveq1 6091 . . . . . . . . . 10  |-  ( k  =  0  ->  (
k BernPoly  ( X  +  1 ) )  =  ( 0 BernPoly  ( X  + 
1 ) ) )
97 oveq2 6092 . . . . . . . . . . 11  |-  ( k  =  0  ->  ( N  -  k )  =  ( N  - 
0 ) )
9897oveq1d 6099 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( N  -  k
)  +  1 )  =  ( ( N  -  0 )  +  1 ) )
9996, 98oveq12d 6102 . . . . . . . . 9  |-  ( k  =  0  ->  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) )  =  ( ( 0 BernPoly  ( X  +  1 ) )  /  ( ( N  -  0 )  +  1 ) ) )
10095, 99oveq12d 6102 . . . . . . . 8  |-  ( k  =  0  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) )  =  ( ( N  _C  0 )  x.  (
( 0 BernPoly  ( X  +  1 ) )  /  ( ( N  -  0 )  +  1 ) ) ) )
10178, 35, 100fsum1p 12544 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  =  ( ( ( N  _C  0 )  x.  ( ( 0 BernPoly  ( X  +  1
) )  /  (
( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( (
0  +  1 ) ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) ) ) )
102 bpoly0 26101 . . . . . . . . . . 11  |-  ( ( X  +  1 )  e.  CC  ->  (
0 BernPoly  ( X  +  1 ) )  =  1 )
1035, 102syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 0 BernPoly  ( X  +  1 ) )  =  1 )
104103oveq1d 6099 . . . . . . . . 9  |-  ( ph  ->  ( ( 0 BernPoly  ( X  +  1 ) )  /  ( ( N  -  0 )  +  1 ) )  =  ( 1  / 
( ( N  - 
0 )  +  1 ) ) )
105104oveq2d 6100 . . . . . . . 8  |-  ( ph  ->  ( ( N  _C  0 )  x.  (
( 0 BernPoly  ( X  +  1 ) )  /  ( ( N  -  0 )  +  1 ) ) )  =  ( ( N  _C  0 )  x.  ( 1  /  (
( N  -  0 )  +  1 ) ) ) )
106105oveq1d 6099 . . . . . . 7  |-  ( ph  ->  ( ( ( N  _C  0 )  x.  ( ( 0 BernPoly  ( X  +  1 ) )  /  ( ( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) ) )  =  ( ( ( N  _C  0 )  x.  (
1  /  ( ( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) ) ) )
107101, 106eqtrd 2470 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  =  ( ( ( N  _C  0 )  x.  ( 1  / 
( ( N  - 
0 )  +  1 ) ) )  + 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) ) ) )
108 oveq1 6091 . . . . . . . . . 10  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
109108, 98oveq12d 6102 . . . . . . . . 9  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  ( ( N  -  0 )  +  1 ) ) )
11095, 109oveq12d 6102 . . . . . . . 8  |-  ( k  =  0  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  =  ( ( N  _C  0
)  x.  ( ( 0 BernPoly  X )  /  (
( N  -  0 )  +  1 ) ) ) )
11178, 41, 110fsum1p 12544 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( ( ( N  _C  0 )  x.  ( ( 0 BernPoly  X )  /  (
( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( (
0  +  1 ) ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
112 bpoly0 26101 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
1133, 112syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 0 BernPoly  X )  =  1 )
114113oveq1d 6099 . . . . . . . . 9  |-  ( ph  ->  ( ( 0 BernPoly  X
)  /  ( ( N  -  0 )  +  1 ) )  =  ( 1  / 
( ( N  - 
0 )  +  1 ) ) )
115114oveq2d 6100 . . . . . . . 8  |-  ( ph  ->  ( ( N  _C  0 )  x.  (
( 0 BernPoly  X )  /  ( ( N  -  0 )  +  1 ) ) )  =  ( ( N  _C  0 )  x.  ( 1  /  (
( N  -  0 )  +  1 ) ) ) )
116115oveq1d 6099 . . . . . . 7  |-  ( ph  ->  ( ( ( N  _C  0 )  x.  ( ( 0 BernPoly  X
)  /  ( ( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) )  =  ( ( ( N  _C  0 )  x.  (
1  /  ( ( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) ) )
117111, 116eqtrd 2470 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( ( ( N  _C  0 )  x.  ( 1  / 
( ( N  - 
0 )  +  1 ) ) )  + 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) ) )
118107, 117oveq12d 6102 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) )  =  ( ( ( ( N  _C  0 )  x.  (
1  /  ( ( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) ) )  -  (
( ( N  _C  0 )  x.  (
1  /  ( ( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) ) ) )
119 0z 10298 . . . . . . . . 9  |-  0  e.  ZZ
120 bccl 11618 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  0  e.  ZZ )  ->  ( N  _C  0
)  e.  NN0 )
1212, 119, 120sylancl 645 . . . . . . . 8  |-  ( ph  ->  ( N  _C  0
)  e.  NN0 )
122121nn0cnd 10281 . . . . . . 7  |-  ( ph  ->  ( N  _C  0
)  e.  CC )
12321subid1d 9405 . . . . . . . . . . 11  |-  ( ph  ->  ( N  -  0 )  =  N )
124123, 1eqeltrd 2512 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  0 )  e.  NN )
125124peano2nnd 10022 . . . . . . . . 9  |-  ( ph  ->  ( ( N  - 
0 )  +  1 )  e.  NN )
126125nnrecred 10050 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( N  -  0 )  +  1 ) )  e.  RR )
127126recnd 9119 . . . . . . 7  |-  ( ph  ->  ( 1  /  (
( N  -  0 )  +  1 ) )  e.  CC )
128122, 127mulcld 9113 . . . . . 6  |-  ( ph  ->  ( ( N  _C  0 )  x.  (
1  /  ( ( N  -  0 )  +  1 ) ) )  e.  CC )
129 fzfid 11317 . . . . . . 7  |-  ( ph  ->  ( ( 0  +  1 ) ... ( N  -  1 ) )  e.  Fin )
130 fzp1ss 11103 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  -  1 ) ) 
C_  ( 0 ... ( N  -  1 ) ) )
131119, 130ax-mp 5 . . . . . . . . 9  |-  ( ( 0  +  1 ) ... ( N  - 
1 ) )  C_  ( 0 ... ( N  -  1 ) )
132131sseli 3346 . . . . . . . 8  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) )  ->  k  e.  ( 0 ... ( N  -  1 ) ) )
133132, 35sylan2 462 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) )  e.  CC )
134129, 133fsumcl 12532 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
135132, 41sylan2 462 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  e.  CC )
136129, 135fsumcl 12532 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
137128, 134, 136pnpcand 9453 . . . . 5  |-  ( ph  ->  ( ( ( ( N  _C  0 )  x.  ( 1  / 
( ( N  - 
0 )  +  1 ) ) )  + 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) ) )  -  ( ( ( N  _C  0
)  x.  ( 1  /  ( ( N  -  0 )  +  1 ) ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) ) )  =  (
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) ) )
138 1z 10316 . . . . . . . . 9  |-  1  e.  ZZ
139138a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
140119a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
1411nnzd 10379 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
142 2z 10317 . . . . . . . . 9  |-  2  e.  ZZ
143 zsubcl 10324 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  2  e.  ZZ )  ->  ( N  -  2 )  e.  ZZ )
144141, 142, 143sylancl 645 . . . . . . . 8  |-  ( ph  ->  ( N  -  2 )  e.  ZZ )
145 fzssp1 11100 . . . . . . . . . . 11  |-  ( 0 ... ( N  - 
2 ) )  C_  ( 0 ... (
( N  -  2 )  +  1 ) )
146 2m1e1 10100 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
147146oveq2i 6095 . . . . . . . . . . . . 13  |-  ( N  -  ( 2  -  1 ) )  =  ( N  -  1 )
148 2cn 10075 . . . . . . . . . . . . . . 15  |-  2  e.  CC
149148a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  CC )
15021, 149, 83subsubd 9444 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  (
2  -  1 ) )  =  ( ( N  -  2 )  +  1 ) )
151147, 150syl5reqr 2485 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  - 
2 )  +  1 )  =  ( N  -  1 ) )
152151oveq2d 6100 . . . . . . . . . . 11  |-  ( ph  ->  ( 0 ... (
( N  -  2 )  +  1 ) )  =  ( 0 ... ( N  - 
1 ) ) )
153145, 152syl5sseq 3398 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... ( N  -  2 ) )  C_  ( 0 ... ( N  - 
1 ) ) )
154153sselda 3350 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( 0 ... ( N  -  2 ) ) )  ->  m  e.  ( 0 ... ( N  -  1 ) ) )
155154, 72syldan 458 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( 0 ... ( N  -  2 ) ) )  ->  (
( N  _C  m
)  x.  ( X ^ m ) )  e.  CC )
156 oveq2 6092 . . . . . . . . 9  |-  ( m  =  ( k  - 
1 )  ->  ( N  _C  m )  =  ( N  _C  (
k  -  1 ) ) )
157 oveq2 6092 . . . . . . . . 9  |-  ( m  =  ( k  - 
1 )  ->  ( X ^ m )  =  ( X ^ (
k  -  1 ) ) )
158156, 157oveq12d 6102 . . . . . . . 8  |-  ( m  =  ( k  - 
1 )  ->  (
( N  _C  m
)  x.  ( X ^ m ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( X ^ (
k  -  1 ) ) ) )
159139, 140, 144, 155, 158fsumshft 12568 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  (
0 ... ( N  - 
2 ) ) ( ( N  _C  m
)  x.  ( X ^ m ) )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( ( N  -  2 )  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
160151oveq2d 6100 . . . . . . . 8  |-  ( ph  ->  ( ( 0  +  1 ) ... (
( N  -  2 )  +  1 ) )  =  ( ( 0  +  1 ) ... ( N  - 
1 ) ) )
161160sumeq1d 12500 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( ( N  -  2 )  +  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  ( X ^ ( k  - 
1 ) ) )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
162159, 161eqtrd 2470 . . . . . 6  |-  ( ph  -> 
sum_ m  e.  (
0 ... ( N  - 
2 ) ) ( ( N  _C  m
)  x.  ( X ^ m ) )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
163 0p1e1 10098 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
164163oveq1i 6094 . . . . . . . . 9  |-  ( ( 0  +  1 ) ... ( N  - 
1 ) )  =  ( 1 ... ( N  -  1 ) )
165164eleq2i 2502 . . . . . . . 8  |-  ( k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) )  <->  k  e.  ( 1 ... ( N  -  1 ) ) )
166 fzssp1 11100 . . . . . . . . . . . . . 14  |-  ( 1 ... ( N  - 
1 ) )  C_  ( 1 ... (
( N  -  1 )  +  1 ) )
16724oveq2d 6100 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... (
( N  -  1 )  +  1 ) )  =  ( 1 ... N ) )
168166, 167syl5sseq 3398 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  ( 1 ... N ) )
169168sselda 3350 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  k  e.  ( 1 ... N
) )
170 bcm1k 11611 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... N )  ->  ( N  _C  k )  =  ( ( N  _C  ( k  -  1 ) )  x.  (
( N  -  (
k  -  1 ) )  /  k ) ) )
171169, 170syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( N  _C  k )  =  ( ( N  _C  ( k  -  1 ) )  x.  (
( N  -  (
k  -  1 ) )  /  k ) ) )
1721adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  N  e.  NN )
173172nncnd 10021 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  N  e.  CC )
174 elfznn 11085 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  k  e.  NN )
175174adantl 454 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  k  e.  NN )
176175nncnd 10021 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  k  e.  CC )
17722a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  1  e.  CC )
178173, 176, 177subsubd 9444 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( N  -  ( k  -  1 ) )  =  ( ( N  -  k )  +  1 ) )
179178oveq1d 6099 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( N  -  (
k  -  1 ) )  /  k )  =  ( ( ( N  -  k )  +  1 )  / 
k ) )
180179oveq2d 6100 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( N  -  ( k  -  1 ) )  /  k ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( ( N  -  k )  +  1 )  /  k
) ) )
181171, 180eqtrd 2470 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( N  _C  k )  =  ( ( N  _C  ( k  -  1 ) )  x.  (
( ( N  -  k )  +  1 )  /  k ) ) )
182 bpolydiflem.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( k BernPoly  ( X  +  1 ) )  -  ( k BernPoly  X
) )  =  ( k  x.  ( X ^ ( k  - 
1 ) ) ) )
183182oveq1d 6099 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( k BernPoly  ( X  +  1 ) )  -  ( k BernPoly  X ) )  / 
( ( N  -  k )  +  1 ) )  =  ( ( k  x.  ( X ^ ( k  - 
1 ) ) )  /  ( ( N  -  k )  +  1 ) ) )
184165, 132sylbir 206 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  k  e.  ( 0 ... ( N  -  1 ) ) )
185184, 19sylan2 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
k BernPoly  ( X  +  1 ) )  e.  CC )
186184, 39sylan2 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
k BernPoly  X )  e.  CC )
187184, 32sylan2 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( N  -  k
)  +  1 )  e.  CC )
188184, 33sylan2 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( N  -  k
)  +  1 )  =/=  0 )
189185, 186, 187, 188divsubdird 9834 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( k BernPoly  ( X  +  1 ) )  -  ( k BernPoly  X ) )  / 
( ( N  -  k )  +  1 ) )  =  ( ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) )  -  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )
1903adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  X  e.  CC )
191 nnm1nn0 10266 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
192175, 191syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
193190, 192expcld 11528 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( X ^ ( k  - 
1 ) )  e.  CC )
194176, 193, 187, 188div23d 9832 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( k  x.  ( X ^ ( k  - 
1 ) ) )  /  ( ( N  -  k )  +  1 ) )  =  ( ( k  / 
( ( N  -  k )  +  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
195183, 189, 1943eqtr3d 2478 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) )  -  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  =  ( ( k  /  (
( N  -  k
)  +  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
196181, 195oveq12d 6102 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) )  -  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) )  =  ( ( ( N  _C  ( k  -  1 ) )  x.  (
( ( N  -  k )  +  1 )  /  k ) )  x.  ( ( k  /  ( ( N  -  k )  +  1 ) )  x.  ( X ^
( k  -  1 ) ) ) ) )
197184, 16sylan2 462 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( N  _C  k )  e.  CC )
198185, 187, 188divcld 9795 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) )  e.  CC )
199186, 187, 188divcld 9795 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) )  e.  CC )
200197, 198, 199subdid 9494 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( N  _C  k
)  x.  ( ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) )  -  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) )  =  ( ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) ) )
201172nnnn0d 10279 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  N  e.  NN0 )
202192nn0zd 10378 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
k  -  1 )  e.  ZZ )
203 bccl 11618 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( N  _C  ( k  -  1 ) )  e.  NN0 )
204201, 202, 203syl2anc 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e. 
NN0 )
205204nn0cnd 10281 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( N  _C  ( k  - 
1 ) )  e.  CC )
206175nnne0d 10049 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  k  =/=  0 )
207187, 176, 206divcld 9795 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( N  -  k )  +  1 )  /  k )  e.  CC )
208176, 187, 188divcld 9795 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
k  /  ( ( N  -  k )  +  1 ) )  e.  CC )
209208, 193mulcld 9113 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( k  /  (
( N  -  k
)  +  1 ) )  x.  ( X ^ ( k  - 
1 ) ) )  e.  CC )
210205, 207, 209mulassd 9116 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( ( N  -  k )  +  1 )  /  k ) )  x.  ( ( k  /  ( ( N  -  k )  +  1 ) )  x.  ( X ^
( k  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( ( ( ( N  -  k )  +  1 )  / 
k )  x.  (
( k  /  (
( N  -  k
)  +  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) ) ) )
211187, 176, 188, 206divcan6d 9814 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( ( N  -  k )  +  1 )  /  k
)  x.  ( k  /  ( ( N  -  k )  +  1 ) ) )  =  1 )
212211oveq1d 6099 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( ( ( N  -  k )  +  1 )  / 
k )  x.  (
k  /  ( ( N  -  k )  +  1 ) ) )  x.  ( X ^ ( k  - 
1 ) ) )  =  ( 1  x.  ( X ^ (
k  -  1 ) ) ) )
213207, 208, 193mulassd 9116 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( ( ( N  -  k )  +  1 )  / 
k )  x.  (
k  /  ( ( N  -  k )  +  1 ) ) )  x.  ( X ^ ( k  - 
1 ) ) )  =  ( ( ( ( N  -  k
)  +  1 )  /  k )  x.  ( ( k  / 
( ( N  -  k )  +  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) ) )
214193mulid2d 9111 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
1  x.  ( X ^ ( k  - 
1 ) ) )  =  ( X ^
( k  -  1 ) ) )
215212, 213, 2143eqtr3d 2478 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( ( N  -  k )  +  1 )  /  k
)  x.  ( ( k  /  ( ( N  -  k )  +  1 ) )  x.  ( X ^
( k  -  1 ) ) ) )  =  ( X ^
( k  -  1 ) ) )
216215oveq2d 6100 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( N  _C  (
k  -  1 ) )  x.  ( ( ( ( N  -  k )  +  1 )  /  k )  x.  ( ( k  /  ( ( N  -  k )  +  1 ) )  x.  ( X ^ (
k  -  1 ) ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( X ^ (
k  -  1 ) ) ) )
217210, 216eqtrd 2470 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( N  _C  ( k  -  1 ) )  x.  (
( ( N  -  k )  +  1 )  /  k ) )  x.  ( ( k  /  ( ( N  -  k )  +  1 ) )  x.  ( X ^
( k  -  1 ) ) ) )  =  ( ( N  _C  ( k  - 
1 ) )  x.  ( X ^ (
k  -  1 ) ) ) )
218196, 200, 2173eqtr3d 2478 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) )  =  ( ( N  _C  (
k  -  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
219165, 218sylan2b 463 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) )  ->  (
( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) ) )  =  ( ( N  _C  (
k  -  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
220219sumeq2dv 12502 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( ( N  _C  k )  x.  ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  ( ( N  _C  k )  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  = 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  ( k  -  1 ) )  x.  ( X ^ ( k  - 
1 ) ) ) )
221129, 133, 135fsumsub 12576 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( ( N  _C  k )  x.  ( ( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  ( ( N  _C  k )  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) ) )
222162, 220, 2213eqtr2rd 2477 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) )  =  sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m
) ) )
223118, 137, 2223eqtrd 2474 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  ( X  +  1 ) )  /  ( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) )  =  sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m
) ) )
22494, 223oveq12d 6102 . . 3  |-  ( ph  ->  ( ( ( ( X  +  1 ) ^ N )  -  ( X ^ N ) )  -  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )  =  ( ( sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^
m ) )  +  ( N  x.  ( X ^ ( N  - 
1 ) ) ) )  -  sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m
) ) ) )
225 fzfid 11317 . . . . 5  |-  ( ph  ->  ( 0 ... ( N  -  2 ) )  e.  Fin )
226225, 155fsumcl 12532 . . . 4  |-  ( ph  -> 
sum_ m  e.  (
0 ... ( N  - 
2 ) ) ( ( N  _C  m
)  x.  ( X ^ m ) )  e.  CC )
2273, 77expcld 11528 . . . . 5  |-  ( ph  ->  ( X ^ ( N  -  1 ) )  e.  CC )
22821, 227mulcld 9113 . . . 4  |-  ( ph  ->  ( N  x.  ( X ^ ( N  - 
1 ) ) )  e.  CC )
229226, 228pncan2d 9418 . . 3  |-  ( ph  ->  ( ( sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m
) )  +  ( N  x.  ( X ^ ( N  - 
1 ) ) ) )  -  sum_ m  e.  ( 0 ... ( N  -  2 ) ) ( ( N  _C  m )  x.  ( X ^ m
) ) )  =  ( N  x.  ( X ^ ( N  - 
1 ) ) ) )
230224, 229eqtrd 2470 . 2  |-  ( ph  ->  ( ( ( ( X  +  1 ) ^ N )  -  ( X ^ N ) )  -  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  ( X  + 
1 ) )  / 
( ( N  -  k )  +  1 ) ) )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )  =  ( N  x.  ( X ^ ( N  -  1 ) ) ) )
23110, 43, 2303eqtrd 2474 1  |-  ( ph  ->  ( ( N BernPoly  ( X  +  1 ) )  -  ( N BernPoly  X ) )  =  ( N  x.  ( X ^ ( N  - 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601    C_ wss 3322   ` cfv 5457  (class class class)co 6084   CCcc 8993   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    - cmin 9296    / cdiv 9682   NNcn 10005   2c2 10054   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048   ^cexp 11387    _C cbc 11598   sum_csu 12484   BernPoly cbp 26097
This theorem is referenced by:  bpolydif  26106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-pred 25444  df-wrecs 25536  df-bpoly 26098
  Copyright terms: Public domain W3C validator