MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem2 Unicode version

Theorem bposlem2 20540
Description: There are no odd primes in the range  ( 2 N  /  3 ,  N ] dividing the  N-th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bposlem2.1  |-  ( ph  ->  N  e.  NN )
bposlem2.2  |-  ( ph  ->  P  e.  Prime )
bposlem2.3  |-  ( ph  ->  2  <  P )
bposlem2.4  |-  ( ph  ->  ( ( 2  x.  N )  /  3
)  <  P )
bposlem2.5  |-  ( ph  ->  P  <_  N )
Assertion
Ref Expression
bposlem2  |-  ( ph  ->  ( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  0 )

Proof of Theorem bposlem2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 bposlem2.1 . . 3  |-  ( ph  ->  N  e.  NN )
2 bposlem2.2 . . 3  |-  ( ph  ->  P  e.  Prime )
3 pcbcctr 20531 . . 3  |-  ( ( N  e.  NN  /\  P  e.  Prime )  -> 
( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  sum_ k  e.  ( 1 ... (
2  x.  N ) ) ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
41, 2, 3syl2anc 642 . 2  |-  ( ph  ->  ( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  sum_ k  e.  ( 1 ... (
2  x.  N ) ) ( ( |_
`  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) ) )
5 elfznn 10835 . . . . . 6  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  k  e.  NN )
6 elnn1uz2 10310 . . . . . 6  |-  ( k  e.  NN  <->  ( k  =  1  \/  k  e.  ( ZZ>= `  2 )
) )
75, 6sylib 188 . . . . 5  |-  ( k  e.  ( 1 ... ( 2  x.  N
) )  ->  (
k  =  1  \/  k  e.  ( ZZ>= ` 
2 ) ) )
8 oveq2 5882 . . . . . . . . . . . 12  |-  ( k  =  1  ->  ( P ^ k )  =  ( P ^ 1 ) )
9 prmnn 12777 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
102, 9syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
1110nncnd 9778 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  CC )
1211exp1d 11256 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ 1 )  =  P )
138, 12sylan9eqr 2350 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  ( P ^ k )  =  P )
1413oveq2d 5890 . . . . . . . . . 10  |-  ( (
ph  /\  k  = 
1 )  ->  (
( 2  x.  N
)  /  ( P ^ k ) )  =  ( ( 2  x.  N )  /  P ) )
1514fveq2d 5545 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  ( |_ `  (
( 2  x.  N
)  /  P ) ) )
16 2cn 9832 . . . . . . . . . . . . . 14  |-  2  e.  CC
1716mulid1i 8855 . . . . . . . . . . . . 13  |-  ( 2  x.  1 )  =  2
1811mulid2d 8869 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  x.  P
)  =  P )
19 bposlem2.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  <_  N )
2018, 19eqbrtrd 4059 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  P
)  <_  N )
21 1re 8853 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
2221a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
231nnred 9777 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
2410nnred 9777 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  RR )
2510nngt0d 9805 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  P )
26 lemuldiv 9651 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( ( 1  x.  P )  <_  N  <->  1  <_  ( N  /  P ) ) )
2722, 23, 24, 25, 26syl112anc 1186 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  x.  P )  <_  N  <->  1  <_  ( N  /  P ) ) )
2820, 27mpbid 201 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  ( N  /  P ) )
2923, 10nndivred 9810 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  /  P
)  e.  RR )
30 2re 9831 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
31 2pos 9844 . . . . . . . . . . . . . . . . 17  |-  0  <  2
3230, 31pm3.2i 441 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
33 lemul2 9625 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( N  /  P
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  ( N  /  P )  <->  ( 2  x.  1 )  <_ 
( 2  x.  ( N  /  P ) ) ) )
3421, 32, 33mp3an13 1268 . . . . . . . . . . . . . . 15  |-  ( ( N  /  P )  e.  RR  ->  (
1  <_  ( N  /  P )  <->  ( 2  x.  1 )  <_ 
( 2  x.  ( N  /  P ) ) ) )
3529, 34syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  <_  ( N  /  P )  <->  ( 2  x.  1 )  <_ 
( 2  x.  ( N  /  P ) ) ) )
3628, 35mpbid 201 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  1 )  <_  ( 2  x.  ( N  /  P ) ) )
3717, 36syl5eqbrr 4073 . . . . . . . . . . . 12  |-  ( ph  ->  2  <_  ( 2  x.  ( N  /  P ) ) )
3816a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  CC )
391nncnd 9778 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
4010nnne0d 9806 . . . . . . . . . . . . 13  |-  ( ph  ->  P  =/=  0 )
4138, 39, 11, 40divassd 9587 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  =  ( 2  x.  ( N  /  P ) ) )
4237, 41breqtrrd 4065 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  ( (
2  x.  N )  /  P ) )
43 bposlem2.4 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2  x.  N )  /  3
)  <  P )
44 2nn 9893 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
45 nnmulcl 9785 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
4644, 1, 45sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  N
)  e.  NN )
4746nnred 9777 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  N
)  e.  RR )
48 3re 9833 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
49 3pos 9846 . . . . . . . . . . . . . . . 16  |-  0  <  3
5048, 49pm3.2i 441 . . . . . . . . . . . . . . 15  |-  ( 3  e.  RR  /\  0  <  3 )
51 ltdiv23 9663 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( 3  e.  RR  /\  0  <  3 )  /\  ( P  e.  RR  /\  0  < 
P ) )  -> 
( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( ( 2  x.  N
)  /  P )  <  3 ) )
5250, 51mp3an2 1265 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  N
)  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  ->  ( (
( 2  x.  N
)  /  3 )  <  P  <->  ( (
2  x.  N )  /  P )  <  3 ) )
5347, 24, 25, 52syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( ( 2  x.  N
)  /  P )  <  3 ) )
5443, 53mpbid 201 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  <  3 )
55 df-3 9821 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
5654, 55syl6breq 4078 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  <  ( 2  +  1 ) )
5747, 10nndivred 9810 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  N )  /  P
)  e.  RR )
58 2z 10070 . . . . . . . . . . . 12  |-  2  e.  ZZ
59 flbi 10962 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  N )  /  P
)  e.  RR  /\  2  e.  ZZ )  ->  ( ( |_ `  ( ( 2  x.  N )  /  P
) )  =  2  <-> 
( 2  <_  (
( 2  x.  N
)  /  P )  /\  ( ( 2  x.  N )  /  P )  <  (
2  +  1 ) ) ) )
6057, 58, 59sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  ( ( |_ `  ( ( 2  x.  N )  /  P
) )  =  2  <-> 
( 2  <_  (
( 2  x.  N
)  /  P )  /\  ( ( 2  x.  N )  /  P )  <  (
2  +  1 ) ) ) )
6142, 56, 60mpbir2and 888 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  (
( 2  x.  N
)  /  P ) )  =  2 )
6261adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( ( 2  x.  N )  /  P ) )  =  2 )
6315, 62eqtrd 2328 . . . . . . . 8  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  2 )
6413oveq2d 5890 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  = 
1 )  ->  ( N  /  ( P ^
k ) )  =  ( N  /  P
) )
6564fveq2d 5545 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( N  / 
( P ^ k
) ) )  =  ( |_ `  ( N  /  P ) ) )
66 remulcl 8838 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  RR  /\  ( N  /  P
)  e.  RR )  ->  ( 2  x.  ( N  /  P
) )  e.  RR )
6730, 29, 66sylancr 644 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  e.  RR )
6848a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  3  e.  RR )
69 4re 9835 . . . . . . . . . . . . . . . . . 18  |-  4  e.  RR
7069a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  4  e.  RR )
7141, 54eqbrtrrd 4061 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  <  3 )
72 3lt4 9905 . . . . . . . . . . . . . . . . . 18  |-  3  <  4
7372a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  3  <  4 )
7467, 68, 70, 71, 73lttrd 8993 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  <  4 )
75 2t2e4 9887 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  2 )  =  4
7674, 75syl6breqr 4079 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  ( N  /  P ) )  <  ( 2  x.  2 ) )
77 ltmul2 9623 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  /  P
)  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( N  /  P )  <  2  <->  ( 2  x.  ( N  /  P
) )  <  (
2  x.  2 ) ) )
7830, 32, 77mp3an23 1269 . . . . . . . . . . . . . . . 16  |-  ( ( N  /  P )  e.  RR  ->  (
( N  /  P
)  <  2  <->  ( 2  x.  ( N  /  P ) )  < 
( 2  x.  2 ) ) )
7929, 78syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( N  /  P )  <  2  <->  ( 2  x.  ( N  /  P ) )  <  ( 2  x.  2 ) ) )
8076, 79mpbird 223 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  /  P
)  <  2 )
81 df-2 9820 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
8280, 81syl6breq 4078 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  /  P
)  <  ( 1  +  1 ) )
83 1z 10069 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
84 flbi 10962 . . . . . . . . . . . . . 14  |-  ( ( ( N  /  P
)  e.  RR  /\  1  e.  ZZ )  ->  ( ( |_ `  ( N  /  P
) )  =  1  <-> 
( 1  <_  ( N  /  P )  /\  ( N  /  P
)  <  ( 1  +  1 ) ) ) )
8529, 83, 84sylancl 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( |_ `  ( N  /  P
) )  =  1  <-> 
( 1  <_  ( N  /  P )  /\  ( N  /  P
)  <  ( 1  +  1 ) ) ) )
8628, 82, 85mpbir2and 888 . . . . . . . . . . . 12  |-  ( ph  ->  ( |_ `  ( N  /  P ) )  =  1 )
8786adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( N  /  P ) )  =  1 )
8865, 87eqtrd 2328 . . . . . . . . . 10  |-  ( (
ph  /\  k  = 
1 )  ->  ( |_ `  ( N  / 
( P ^ k
) ) )  =  1 )
8988oveq2d 5890 . . . . . . . . 9  |-  ( (
ph  /\  k  = 
1 )  ->  (
2  x.  ( |_
`  ( N  / 
( P ^ k
) ) ) )  =  ( 2  x.  1 ) )
9089, 17syl6eq 2344 . . . . . . . 8  |-  ( (
ph  /\  k  = 
1 )  ->  (
2  x.  ( |_
`  ( N  / 
( P ^ k
) ) ) )  =  2 )
9163, 90oveq12d 5892 . . . . . . 7  |-  ( (
ph  /\  k  = 
1 )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  ( 2  -  2 ) )
9216subidi 9133 . . . . . . 7  |-  ( 2  -  2 )  =  0
9391, 92syl6eq 2344 . . . . . 6  |-  ( (
ph  /\  k  = 
1 )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
9446nnrpd 10405 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  N
)  e.  RR+ )
9594adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  e.  RR+ )
96 2nn0 9998 . . . . . . . . . . . . . 14  |-  2  e.  NN0
97 eluznn0 10304 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN0  /\  k  e.  ( ZZ>= ` 
2 ) )  -> 
k  e.  NN0 )
9896, 97mpan 651 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN0 )
99 nnexpcl 11132 . . . . . . . . . . . . 13  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P ^ k
)  e.  NN )
10010, 98, 99syl2an 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  NN )
101100nnrpd 10405 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  RR+ )
10295, 101rpdivcld 10423 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  e.  RR+ )
103102rpge0d 10410 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  0  <_  ( ( 2  x.  N
)  /  ( P ^ k ) ) )
10447adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  e.  RR )
105 remulcl 8838 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  RR  /\  P  e.  RR )  ->  ( 3  x.  P
)  e.  RR )
10648, 24, 105sylancr 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  P
)  e.  RR )
107106adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 3  x.  P )  e.  RR )
108100nnred 9777 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  RR )
109 ltdivmul 9644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  N
)  e.  RR  /\  P  e.  RR  /\  (
3  e.  RR  /\  0  <  3 ) )  ->  ( ( ( 2  x.  N )  /  3 )  < 
P  <->  ( 2  x.  N )  <  (
3  x.  P ) ) )
11050, 109mp3an3 1266 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  N
)  e.  RR  /\  P  e.  RR )  ->  ( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( 2  x.  N )  <  ( 3  x.  P ) ) )
11147, 24, 110syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  N )  / 
3 )  <  P  <->  ( 2  x.  N )  <  ( 3  x.  P ) ) )
11243, 111mpbid 201 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  N
)  <  ( 3  x.  P ) )
113112adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  < 
( 3  x.  P
) )
11424, 24remulcld 8879 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P  x.  P
)  e.  RR )
115114adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P  x.  P )  e.  RR )
116 bposlem2.3 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  2  <  P )
117 nnltp1le 10088 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  NN  /\  P  e.  NN )  ->  ( 2  <  P  <->  ( 2  +  1 )  <_  P ) )
11844, 10, 117sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2  <  P  <->  ( 2  +  1 )  <_  P ) )
119116, 118mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  +  1 )  <_  P )
12055, 119syl5eqbr 4072 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  3  <_  P )
121 lemul1 9624 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  RR  /\  P  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( 3  <_  P  <->  ( 3  x.  P )  <_  ( P  x.  P ) ) )
12248, 121mp3an1 1264 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  ->  ( 3  <_  P  <->  ( 3  x.  P )  <_ 
( P  x.  P
) ) )
12324, 24, 25, 122syl12anc 1180 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 3  <_  P  <->  ( 3  x.  P )  <_  ( P  x.  P ) ) )
124120, 123mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 3  x.  P
)  <_  ( P  x.  P ) )
125124adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 3  x.  P )  <_ 
( P  x.  P
) )
12611sqvald 11258 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P ^ 2 )  =  ( P  x.  P ) )
127126adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ 2 )  =  ( P  x.  P
) )
12824adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  P  e.  RR )
12910nnge1d 9804 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  <_  P )
130129adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  1  <_  P )
131 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  k  e.  ( ZZ>= `  2 )
)
132128, 130, 131leexp2ad 11293 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ 2 )  <_ 
( P ^ k
) )
133127, 132eqbrtrrd 4061 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P  x.  P )  <_  ( P ^ k ) )
134107, 115, 108, 125, 133letrd 8989 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 3  x.  P )  <_ 
( P ^ k
) )
135104, 107, 108, 113, 134ltletrd 8992 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  < 
( P ^ k
) )
136100nncnd 9778 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( P ^ k )  e.  CC )
137136mulid1d 8868 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( P ^ k )  x.  1 )  =  ( P ^ k ) )
138135, 137breqtrrd 4065 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  N )  < 
( ( P ^
k )  x.  1 ) )
13921a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  1  e.  RR )
140104, 139, 101ltdivmuld 10453 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
( 2  x.  N
)  /  ( P ^ k ) )  <  1  <->  ( 2  x.  N )  < 
( ( P ^
k )  x.  1 ) ) )
141138, 140mpbird 223 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  <  1 )
142 1e0p1 10168 . . . . . . . . . 10  |-  1  =  ( 0  +  1 )
143141, 142syl6breq 4078 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  < 
( 0  +  1 ) )
144102rpred 10406 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( (
2  x.  N )  /  ( P ^
k ) )  e.  RR )
145 0z 10051 . . . . . . . . . 10  |-  0  e.  ZZ
146 flbi 10962 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  N )  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  =  0  <->  (
0  <_  ( (
2  x.  N )  /  ( P ^
k ) )  /\  ( ( 2  x.  N )  /  ( P ^ k ) )  <  ( 0  +  1 ) ) ) )
147144, 145, 146sylancl 643 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( ( 2  x.  N )  /  ( P ^ k ) )  /\  ( ( 2  x.  N )  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
148103, 143, 147mpbir2and 888 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  =  0 )
1491nnrpd 10405 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  RR+ )
150149adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  e.  RR+ )
151150, 101rpdivcld 10423 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  e.  RR+ )
152151rpge0d 10410 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  0  <_  ( N  /  ( P ^ k ) ) )
15323adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  e.  RR )
15423, 149ltaddrpd 10435 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  <  ( N  +  N ) )
155392timesd 9970 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  N
)  =  ( N  +  N ) )
156154, 155breqtrrd 4065 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  <  ( 2  x.  N ) )
157156adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  <  ( 2  x.  N ) )
158153, 104, 108, 157, 135lttrd 8993 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  <  ( P ^ k ) )
159158, 137breqtrrd 4065 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  N  <  ( ( P ^ k
)  x.  1 ) )
160153, 139, 101ltdivmuld 10453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( N  /  ( P ^
k ) )  <  1  <->  N  <  ( ( P ^ k )  x.  1 ) ) )
161159, 160mpbird 223 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  <  1 )
162161, 142syl6breq 4078 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) )
163151rpred 10406 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( N  /  ( P ^
k ) )  e.  RR )
164 flbi 10962 . . . . . . . . . . . 12  |-  ( ( ( N  /  ( P ^ k ) )  e.  RR  /\  0  e.  ZZ )  ->  (
( |_ `  ( N  /  ( P ^
k ) ) )  =  0  <->  ( 0  <_  ( N  / 
( P ^ k
) )  /\  ( N  /  ( P ^
k ) )  < 
( 0  +  1 ) ) ) )
165163, 145, 164sylancl 643 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( N  / 
( P ^ k
) ) )  =  0  <->  ( 0  <_ 
( N  /  ( P ^ k ) )  /\  ( N  / 
( P ^ k
) )  <  (
0  +  1 ) ) ) )
166152, 162, 165mpbir2and 888 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  =  0 )
167166oveq2d 5890 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  ( 2  x.  0 ) )
16816mul01i 9018 . . . . . . . . 9  |-  ( 2  x.  0 )  =  0
169167, 168syl6eq 2344 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) )  =  0 )
170148, 169oveq12d 5892 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  ( 0  -  0 ) )
171 0cn 8847 . . . . . . . 8  |-  0  e.  CC
172171subidi 9133 . . . . . . 7  |-  ( 0  -  0 )  =  0
173170, 172syl6eq 2344 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  2 )
)  ->  ( ( |_ `  ( ( 2  x.  N )  / 
( P ^ k
) ) )  -  ( 2  x.  ( |_ `  ( N  / 
( P ^ k
) ) ) ) )  =  0 )
17493, 173jaodan 760 . . . . 5  |-  ( (
ph  /\  ( k  =  1  \/  k  e.  ( ZZ>= `  2 )
) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
1757, 174sylan2 460 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... (
2  x.  N ) ) )  ->  (
( |_ `  (
( 2  x.  N
)  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
176175sumeq2dv 12192 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) ( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  = 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) 0 )
177 fzfid 11051 . . . 4  |-  ( ph  ->  ( 1 ... (
2  x.  N ) )  e.  Fin )
178 sumz 12211 . . . . 5  |-  ( ( ( 1 ... (
2  x.  N ) )  C_  ( ZZ>= ` 
1 )  \/  (
1 ... ( 2  x.  N ) )  e. 
Fin )  ->  sum_ k  e.  ( 1 ... (
2  x.  N ) ) 0  =  0 )
179178olcs 384 . . . 4  |-  ( ( 1 ... ( 2  x.  N ) )  e.  Fin  ->  sum_ k  e.  ( 1 ... (
2  x.  N ) ) 0  =  0 )
180177, 179syl 15 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) 0  =  0 )
181176, 180eqtrd 2328 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( 2  x.  N ) ) ( ( |_ `  ( ( 2  x.  N )  /  ( P ^ k ) ) )  -  ( 2  x.  ( |_ `  ( N  /  ( P ^ k ) ) ) ) )  =  0 )
1824, 181eqtrd 2328 1  |-  ( ph  ->  ( P  pCnt  (
( 2  x.  N
)  _C  N ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   4c4 9813   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798   |_cfl 10940   ^cexp 11120    _C cbc 11331   sum_csu 12174   Primecprime 12774    pCnt cpc 12905
This theorem is referenced by:  bposlem3  20541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906
  Copyright terms: Public domain W3C validator