MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab2ga Structured version   Unicode version

Theorem brab2ga 4943
Description: The law of concretion for a binary relation. See brab2a 4919 for alternate proof. TODO: should one of them be deleted? (Contributed by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
brab2ga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
brab2ga.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
Assertion
Ref Expression
brab2ga  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y    ps, x, y
Allowed substitution hints:    ph( x, y)    R( x, y)

Proof of Theorem brab2ga
StepHypRef Expression
1 brab2ga.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
2 opabssxp 4942 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } 
C_  ( C  X.  D )
31, 2eqsstri 3370 . . 3  |-  R  C_  ( C  X.  D
)
43brel 4918 . 2  |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D )
)
5 df-br 4205 . . . 4  |-  ( A R B  <->  <. A ,  B >.  e.  R )
61eleq2i 2499 . . . 4  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
75, 6bitri 241 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
8 brab2ga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
98opelopab2a 4462 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
107, 9syl5bb 249 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ps ) )
114, 10biadan2 624 1  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809   class class class wbr 4204   {copab 4257    X. cxp 4868
This theorem is referenced by:  fnse  6455  ltxrlt  9136  ltxr  10705  gaorb  15074  ispgp  15216  efgcpbllema  15376  lmbr  17312  isphtpc  19009  vitalilem1  19490  vitalilem2  19491  vitalilem3  19492  filnetlem1  26361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876
  Copyright terms: Public domain W3C validator