Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabg Unicode version

Theorem brabg 4434
 Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1
opelopabg.2
brabg.5
Assertion
Ref Expression
brabg
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,)   (,)   (,)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3
2 opelopabg.2 . . 3
31, 2sylan9bb 681 . 2
4 brabg.5 . 2
53, 4brabga 4429 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1649   wcel 1721   class class class wbr 4172  copab 4225 This theorem is referenced by:  brab  4437  ideqg  4983  opelcnvg  5011  f1owe  6032  brrpssg  6483  bren  7076  brdomg  7077  brwdom  7491  ltprord  8863  shftfib  11842  efgrelexlema  15336  cmbr  23039  leopg  23578  cvbr  23738  mdbr  23750  dmdbr  23755  soseq  25468  sltval  25515  axcontlem5  25811  isfne  26238  isref  26249  brabg2  26307  isriscg  26490  isfrgra  28094  lcvbr  29504 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227
 Copyright terms: Public domain W3C validator