Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabga Unicode version

Theorem brabga 4295
 Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabga.1
brabga.2
Assertion
Ref Expression
brabga
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,)   (,)

Proof of Theorem brabga
StepHypRef Expression
1 df-br 4040 . . 3
2 brabga.2 . . . 4
32eleq2i 2360 . . 3
41, 3bitri 240 . 2
5 opelopabga.1 . . 3
65opelopabga 4294 . 2
74, 6syl5bb 248 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   wceq 1632   wcel 1696  cop 3656   class class class wbr 4039  copab 4092 This theorem is referenced by:  braba  4298  brabg  4300  epelg  4322  brcog  4866  fmptco  5707  ofrfval  6102  wemaplem1  7277  oemapval  7401  wemapwe  7416  fpwwe2lem2  8270  fpwwelem  8283  clim  11984  rlim  11985  vdwmc  13041  isstruct2  13173  brssc  13707  isfunc  13754  isfull  13800  isfth  13804  ipole  14277  eqgval  14682  frgpuplem  15097  dvdsr  15444  ulmval  19775  hlimi  21783  fmptcof2  23244  isumgra  23882  iseupa  23896  isside1  26268  islindf  27385  isuslgra  28234  isusgra  28235  iscusgra  28292  iswlkon  28332  istrlon  28340  ispthon  28362 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094
 Copyright terms: Public domain W3C validator