Mathbox for Rodolfo Medina < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabsb2 Structured version   Unicode version

Theorem brabsb2 26702
 Description: Closed form of brabsbOLD 4456. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
brabsb2
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,,,)   (,,,)

Proof of Theorem brabsb2
StepHypRef Expression
1 breq 4206 . . 3
2 df-br 4205 . . 3
31, 2syl6bb 253 . 2
4 opelopabsbOLD 4455 . 2
53, 4syl6bb 253 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652  wsb 1658   wcel 1725  cop 3809   class class class wbr 4204  copab 4257 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259
 Copyright terms: Public domain W3C validator