Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  brafval Structured version   Unicode version

Theorem brafval 23438
 Description: The bra of a vector, expressed as in Dirac notation. See df-bra 23345. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
brafval
Distinct variable group:   ,

Proof of Theorem brafval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 oveq2 6081 . . 3
21mpteq2dv 4288 . 2
3 df-bra 23345 . 2
4 ax-hilex 22494 . . 3
54mptex 5958 . 2
62, 3, 5fvmpt 5798 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725   cmpt 4258  cfv 5446  (class class class)co 6073  chil 22414   csp 22417  cbr 22451 This theorem is referenced by:  braval  23439  brafn  23442  bra0  23445  brafnmul  23446 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-hilex 22494 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-bra 23345
 Copyright terms: Public domain W3C validator