HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  brafval Unicode version

Theorem brafval 22523
Description: The bra of a vector, expressed as  <. A  | in Dirac notation. See df-bra 22430. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
brafval  |-  ( A  e.  ~H  ->  ( bra `  A )  =  ( x  e.  ~H  |->  ( x  .ih  A ) ) )
Distinct variable group:    x, A

Proof of Theorem brafval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oveq2 5866 . . 3  |-  ( y  =  A  ->  (
x  .ih  y )  =  ( x  .ih  A ) )
21mpteq2dv 4107 . 2  |-  ( y  =  A  ->  (
x  e.  ~H  |->  ( x  .ih  y ) )  =  ( x  e.  ~H  |->  ( x 
.ih  A ) ) )
3 df-bra 22430 . 2  |-  bra  =  ( y  e.  ~H  |->  ( x  e.  ~H  |->  ( x  .ih  y ) ) )
4 ax-hilex 21579 . . 3  |-  ~H  e.  _V
54mptex 5746 . 2  |-  ( x  e.  ~H  |->  ( x 
.ih  A ) )  e.  _V
62, 3, 5fvmpt 5602 1  |-  ( A  e.  ~H  ->  ( bra `  A )  =  ( x  e.  ~H  |->  ( x  .ih  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   ~Hchil 21499    .ih csp 21502   bracbr 21536
This theorem is referenced by:  braval  22524  brafn  22527  bra0  22530  brafnmul  22531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-bra 22430
  Copyright terms: Public domain W3C validator