Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brbtwn Unicode version

Theorem brbtwn 25545
Description: The binary relationship form of the betweenness predicate. The statement  A  Btwn  <. B ,  C >. should be informally read as " A lies on a line segment between  B and  C. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brbtwn  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
Distinct variable groups:    i, N, t    A, i, t    B, i, t    C, i, t

Proof of Theorem brbtwn
Dummy variables  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-btwn 25538 . . 3  |-  Btwn  =  `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }
21breqi 4152 . 2  |-  ( A 
Btwn  <. B ,  C >.  <-> 
A `' { <. <.
y ,  z >. ,  x >.  |  E. n  e.  NN  (
( y  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. )
3 opex 4361 . . . . 5  |-  <. B ,  C >.  e.  _V
4 brcnvg 4986 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  <. B ,  C >.  e. 
_V )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
53, 4mpan2 653 . . . 4  |-  ( A  e.  ( EE `  N )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
653ad2ant1 978 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
7 df-br 4147 . . . 4  |-  ( <. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A  <->  <. <. B ,  C >. ,  A >.  e. 
{ <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } )
8 eleq1 2440 . . . . . . . . . 10  |-  ( y  =  B  ->  (
y  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
983anbi1d 1258 . . . . . . . . 9  |-  ( y  =  B  ->  (
( y  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) ) ) )
10 fveq1 5660 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  (
y `  i )  =  ( B `  i ) )
1110oveq2d 6029 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
( 1  -  t
)  x.  ( y `
 i ) )  =  ( ( 1  -  t )  x.  ( B `  i
) ) )
1211oveq1d 6028 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
z `  i )
) ) )
1312eqeq2d 2391 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( y `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) )
1413rexralbidv 2686 . . . . . . . . 9  |-  ( y  =  B  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( y `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) )
159, 14anbi12d 692 . . . . . . . 8  |-  ( y  =  B  ->  (
( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  z  e.  ( EE `  n
)  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) ) )
1615rexbidv 2663 . . . . . . 7  |-  ( y  =  B  ->  ( E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) ) )
17 eleq1 2440 . . . . . . . . . 10  |-  ( z  =  C  ->  (
z  e.  ( EE
`  n )  <->  C  e.  ( EE `  n ) ) )
18173anbi2d 1259 . . . . . . . . 9  |-  ( z  =  C  ->  (
( B  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) ) ) )
19 fveq1 5660 . . . . . . . . . . . . 13  |-  ( z  =  C  ->  (
z `  i )  =  ( C `  i ) )
2019oveq2d 6029 . . . . . . . . . . . 12  |-  ( z  =  C  ->  (
t  x.  ( z `
 i ) )  =  ( t  x.  ( C `  i
) ) )
2120oveq2d 6029 . . . . . . . . . . 11  |-  ( z  =  C  ->  (
( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) ) )
2221eqeq2d 2391 . . . . . . . . . 10  |-  ( z  =  C  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
2322rexralbidv 2686 . . . . . . . . 9  |-  ( z  =  C  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
2418, 23anbi12d 692 . . . . . . . 8  |-  ( z  =  C  ->  (
( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
2524rexbidv 2663 . . . . . . 7  |-  ( z  =  C  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
26 eleq1 2440 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
27263anbi3d 1260 . . . . . . . . 9  |-  ( x  =  A  ->  (
( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) ) ) )
28 fveq1 5660 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x `  i )  =  ( A `  i ) )
2928eqeq1d 2388 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
3029rexralbidv 2686 . . . . . . . . 9  |-  ( x  =  A  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
3127, 30anbi12d 692 . . . . . . . 8  |-  ( x  =  A  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
3231rexbidv 2663 . . . . . . 7  |-  ( x  =  A  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
3316, 25, 32eloprabg 6093 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
34 simp1 957 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  n )  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n
) )  ->  B  e.  ( EE `  n
) )
35 simp1 957 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
36 eedimeq 25544 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  n )  /\  B  e.  ( EE `  N ) )  ->  n  =  N )
3734, 35, 36syl2anr 465 . . . . . . . . . . 11  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  n  =  N )
38 oveq2 6021 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3938raleqdv 2846 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( A. i  e.  (
1 ... n ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4039rexbidv 2663 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4137, 40syl 16 . . . . . . . . . 10  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4241biimpd 199 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  ->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
4342expimpd 587 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  ->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4443rexlimdvw 2769 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  ->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
45 eleenn 25542 . . . . . . . . 9  |-  ( B  e.  ( EE `  N )  ->  N  e.  NN )
46453ad2ant1 978 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  N  e.  NN )
47 fveq2 5661 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
4847eleq2d 2447 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( B  e.  ( EE `  n )  <->  B  e.  ( EE `  N ) ) )
4947eleq2d 2447 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( C  e.  ( EE `  n )  <->  C  e.  ( EE `  N ) ) )
5047eleq2d 2447 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
5148, 49, 503anbi123d 1254 . . . . . . . . . . 11  |-  ( n  =  N  ->  (
( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) ) )
5251, 40anbi12d 692 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  A  e.  ( EE `  N ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
5352rspcev 2988 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
5453exp32 589 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  ->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) ) )
5546, 54mpcom 34 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
5644, 55impbid 184 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
5733, 56bitrd 245 . . . . 5  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
58573comr 1161 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
597, 58syl5bb 249 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
606, 59bitrd 245 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
612, 60syl5bb 249 1  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643   _Vcvv 2892   <.cop 3753   class class class wbr 4146   `'ccnv 4810   ` cfv 5387  (class class class)co 6013   {coprab 6014   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    - cmin 9216   NNcn 9925   [,]cicc 10844   ...cfz 10968   EEcee 25534    Btwn cbtwn 25535
This theorem is referenced by:  brbtwn2  25551  axsegcon  25573  ax5seg  25584  axbtwnid  25585  axpasch  25587  axeuclid  25609  axcontlem2  25611  axcontlem4  25613  axcontlem7  25616  axcontlem8  25617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-z 10208  df-uz 10414  df-fz 10969  df-ee 25537  df-btwn 25538
  Copyright terms: Public domain W3C validator