Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brbtwn Unicode version

Theorem brbtwn 24599
Description: The binary relationship form of the betweenness predicate. The statement  A  Btwn  <. B ,  C >. should be informally read as " A lies on a line segment between  B and  C. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brbtwn  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
Distinct variable groups:    i, N, t    A, i, t    B, i, t    C, i, t

Proof of Theorem brbtwn
Dummy variables  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-btwn 24592 . . 3  |-  Btwn  =  `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }
21breqi 4045 . 2  |-  ( A 
Btwn  <. B ,  C >.  <-> 
A `' { <. <.
y ,  z >. ,  x >.  |  E. n  e.  NN  (
( y  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. )
3 opex 4253 . . . . 5  |-  <. B ,  C >.  e.  _V
4 brcnvg 4878 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  <. B ,  C >.  e. 
_V )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
53, 4mpan2 652 . . . 4  |-  ( A  e.  ( EE `  N )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
653ad2ant1 976 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<-> 
<. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A ) )
7 df-br 4040 . . . 4  |-  ( <. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A  <->  <. <. B ,  C >. ,  A >.  e. 
{ <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } )
8 eleq1 2356 . . . . . . . . . 10  |-  ( y  =  B  ->  (
y  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
983anbi1d 1256 . . . . . . . . 9  |-  ( y  =  B  ->  (
( y  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) ) ) )
10 fveq1 5540 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  (
y `  i )  =  ( B `  i ) )
1110oveq2d 5890 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
( 1  -  t
)  x.  ( y `
 i ) )  =  ( ( 1  -  t )  x.  ( B `  i
) ) )
1211oveq1d 5889 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  (
z `  i )
) ) )
1312eqeq2d 2307 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( y `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) )
1413rexralbidv 2600 . . . . . . . . 9  |-  ( y  =  B  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( y `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) )
159, 14anbi12d 691 . . . . . . . 8  |-  ( y  =  B  ->  (
( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  z  e.  ( EE `  n
)  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) ) )
1615rexbidv 2577 . . . . . . 7  |-  ( y  =  B  ->  ( E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) ) )
17 eleq1 2356 . . . . . . . . . 10  |-  ( z  =  C  ->  (
z  e.  ( EE
`  n )  <->  C  e.  ( EE `  n ) ) )
18173anbi2d 1257 . . . . . . . . 9  |-  ( z  =  C  ->  (
( B  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) ) ) )
19 fveq1 5540 . . . . . . . . . . . . 13  |-  ( z  =  C  ->  (
z `  i )  =  ( C `  i ) )
2019oveq2d 5890 . . . . . . . . . . . 12  |-  ( z  =  C  ->  (
t  x.  ( z `
 i ) )  =  ( t  x.  ( C `  i
) ) )
2120oveq2d 5890 . . . . . . . . . . 11  |-  ( z  =  C  ->  (
( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) ) )
2221eqeq2d 2307 . . . . . . . . . 10  |-  ( z  =  C  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
2322rexralbidv 2600 . . . . . . . . 9  |-  ( z  =  C  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( z `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
2418, 23anbi12d 691 . . . . . . . 8  |-  ( z  =  C  ->  (
( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
2524rexbidv 2577 . . . . . . 7  |-  ( z  =  C  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( z `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
26 eleq1 2356 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
27263anbi3d 1258 . . . . . . . . 9  |-  ( x  =  A  ->  (
( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) ) ) )
28 fveq1 5540 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x `  i )  =  ( A `  i ) )
2928eqeq1d 2304 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
3029rexralbidv 2600 . . . . . . . . 9  |-  ( x  =  A  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
3127, 30anbi12d 691 . . . . . . . 8  |-  ( x  =  A  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
3231rexbidv 2577 . . . . . . 7  |-  ( x  =  A  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
3316, 25, 32eloprabg 5951 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
34 simp1 955 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  n )  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n
) )  ->  B  e.  ( EE `  n
) )
35 simp1 955 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
36 eedimeq 24598 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  n )  /\  B  e.  ( EE `  N ) )  ->  n  =  N )
3734, 35, 36syl2anr 464 . . . . . . . . . . 11  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  n  =  N )
38 oveq2 5882 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3938raleqdv 2755 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( A. i  e.  (
1 ... n ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) )  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4039rexbidv 2577 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4137, 40syl 15 . . . . . . . . . 10  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4241biimpd 198 . . . . . . . . 9  |-  ( ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) ) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... n ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  ->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
4342expimpd 586 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  ->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
4443rexlimdvw 2683 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  ->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
45 eleenn 24596 . . . . . . . . 9  |-  ( B  e.  ( EE `  N )  ->  N  e.  NN )
46453ad2ant1 976 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  N  e.  NN )
47 fveq2 5541 . . . . . . . . . . . . 13  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
4847eleq2d 2363 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( B  e.  ( EE `  n )  <->  B  e.  ( EE `  N ) ) )
4947eleq2d 2363 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( C  e.  ( EE `  n )  <->  C  e.  ( EE `  N ) ) )
5047eleq2d 2363 . . . . . . . . . . . 12  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
5148, 49, 503anbi123d 1252 . . . . . . . . . . 11  |-  ( n  =  N  ->  (
( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  <->  ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) ) )
5251, 40anbi12d 691 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  ( ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  A  e.  ( EE `  N ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
5352rspcev 2897 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
5453exp32 588 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  ->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( C `  i )
) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
)  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) ) )
5546, 54mpcom 32 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) )  ->  E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) ) )
5644, 55impbid 183 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( E. n  e.  NN  ( ( B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n )  /\  A  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) )  <->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
5733, 56bitrd 244 . . . . 5  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
58573comr 1159 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
597, 58syl5bb 248 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. B ,  C >. {
<. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } A  <->  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )
606, 59bitrd 244 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A `' { <. <. y ,  z
>. ,  x >.  |  E. n  e.  NN  ( ( y  e.  ( EE `  n
)  /\  z  e.  ( EE `  n )  /\  x  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( x `  i )  =  ( ( ( 1  -  t )  x.  (
y `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) } <. B ,  C >. 
<->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
612, 60syl5bb 248 1  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801   <.cop 3656   class class class wbr 4039   `'ccnv 4704   ` cfv 5271  (class class class)co 5874   {coprab 5875   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   NNcn 9762   [,]cicc 10675   ...cfz 10798   EEcee 24588    Btwn cbtwn 24589
This theorem is referenced by:  brbtwn2  24605  axsegcon  24627  ax5seg  24638  axbtwnid  24639  axpasch  24641  axeuclid  24663  axcontlem2  24665  axcontlem4  24667  axcontlem7  24670  axcontlem8  24671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-z 10041  df-uz 10247  df-fz 10799  df-ee 24591  df-btwn 24592
  Copyright terms: Public domain W3C validator