Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcart Unicode version

Theorem brcart 24471
Description: Binary relationship form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcart.1  |-  A  e. 
_V
brcart.2  |-  B  e. 
_V
brcart.3  |-  C  e. 
_V
Assertion
Ref Expression
brcart  |-  ( <. A ,  B >.Cart C  <-> 
C  =  ( A  X.  B ) )

Proof of Theorem brcart
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4237 . 2  |-  <. A ,  B >.  e.  _V
2 brcart.3 . 2  |-  C  e. 
_V
3 df-cart 24406 . 2  |- Cart  =  ( ( ( _V  X.  _V )  X.  _V )  \  ran  ( ( _V 
(x)  _E  )(++) (pprod (  _E  ,  _E  )  (x)  _V ) ) )
4 brcart.1 . . . 4  |-  A  e. 
_V
5 brcart.2 . . . 4  |-  B  e. 
_V
64, 5opelvv 4735 . . 3  |-  <. A ,  B >.  e.  ( _V 
X.  _V )
7 brxp 4720 . . 3  |-  ( <. A ,  B >. ( ( _V  X.  _V )  X.  _V ) C  <-> 
( <. A ,  B >.  e.  ( _V  X.  _V )  /\  C  e. 
_V ) )
86, 2, 7mpbir2an 886 . 2  |-  <. A ,  B >. ( ( _V 
X.  _V )  X.  _V ) C
9 3anass 938 . . . . 5  |-  ( ( x  =  <. y ,  z >.  /\  y  _E  A  /\  z  _E  B )  <->  ( x  =  <. y ,  z
>.  /\  ( y  _E  A  /\  z  _E  B ) ) )
104epelc 4307 . . . . . . 7  |-  ( y  _E  A  <->  y  e.  A )
115epelc 4307 . . . . . . 7  |-  ( z  _E  B  <->  z  e.  B )
1210, 11anbi12i 678 . . . . . 6  |-  ( ( y  _E  A  /\  z  _E  B )  <->  ( y  e.  A  /\  z  e.  B )
)
1312anbi2i 675 . . . . 5  |-  ( ( x  =  <. y ,  z >.  /\  (
y  _E  A  /\  z  _E  B )
)  <->  ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) ) )
149, 13bitri 240 . . . 4  |-  ( ( x  =  <. y ,  z >.  /\  y  _E  A  /\  z  _E  B )  <->  ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) ) )
15142exbii 1570 . . 3  |-  ( E. y E. z ( x  =  <. y ,  z >.  /\  y  _E  A  /\  z  _E  B )  <->  E. y E. z ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) ) )
16 vex 2791 . . . 4  |-  x  e. 
_V
1716, 4, 5brpprod3b 24427 . . 3  |-  ( xpprod (  _E  ,  _E  ) <. A ,  B >.  <->  E. y E. z ( x  =  <. y ,  z >.  /\  y  _E  A  /\  z  _E  B ) )
18 elxp 4706 . . 3  |-  ( x  e.  ( A  X.  B )  <->  E. y E. z ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) ) )
1915, 17, 183bitr4ri 269 . 2  |-  ( x  e.  ( A  X.  B )  <->  xpprod (  _E  ,  _E  ) <. A ,  B >. )
201, 2, 3, 8, 19brtxpsd3 24436 1  |-  ( <. A ,  B >.Cart C  <-> 
C  =  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   class class class wbr 4023    _E cep 4303    X. cxp 4687  pprodcpprod 24374  Cartccart 24384
This theorem is referenced by:  brimg  24476  brrestrict  24487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-eprel 4305  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6122  df-2nd 6123  df-symdif 24362  df-txp 24395  df-pprod 24396  df-cart 24406
  Copyright terms: Public domain W3C validator