Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr Unicode version

Theorem brcgr 24528
Description: The binary relationship form of the congruence predicate. The statement  <. A ,  B >.Cgr <. C ,  D >. should be read informally as "the  N dimensional point  A is as far from  B as  C is from  D, or "the line segment  A B is congruent to the line segment  C D. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Distinct variable groups:    i, N    A, i    B, i    C, i    D, i

Proof of Theorem brcgr
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4237 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4237 . . 3  |-  <. C ,  D >.  e.  _V
3 eleq1 2343 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
43anbi1d 685 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) ) ) )
5 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
65fveq1d 5527 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 1st `  x ) `  i
)  =  ( ( 1st `  <. A ,  B >. ) `  i
) )
7 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
87fveq1d 5527 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 2nd `  x ) `  i
)  =  ( ( 2nd `  <. A ,  B >. ) `  i
) )
96, 8oveq12d 5876 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
)  =  ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) )
109oveq1d 5873 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 ) )
1110sumeq2sdv 12177 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 ) )
1211eqeq1d 2291 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) )
134, 12anbi12d 691 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `  i
)  -  ( ( 2nd `  x ) `
 i ) ) ^ 2 )  = 
sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
1413rexbidv 2564 . . 3  |-  ( x  =  <. A ,  B >.  ->  ( E. n  e.  NN  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
15 eleq1 2343 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
1615anbi2d 684 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) ) )
17 fveq2 5525 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 1st `  y
)  =  ( 1st `  <. C ,  D >. ) )
1817fveq1d 5527 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 1st `  y ) `  i
)  =  ( ( 1st `  <. C ,  D >. ) `  i
) )
19 fveq2 5525 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 2nd `  y
)  =  ( 2nd `  <. C ,  D >. ) )
2019fveq1d 5527 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 2nd `  y ) `  i
)  =  ( ( 2nd `  <. C ,  D >. ) `  i
) )
2118, 20oveq12d 5876 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
)  =  ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) )
2221oveq1d 5873 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) )
2322sumeq2sdv 12177 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )
2423eqeq2d 2294 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
2516, 24anbi12d 691 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <-> 
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
2625rexbidv 2564 . . 3  |-  ( y  =  <. C ,  D >.  ->  ( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
27 df-cgr 24521 . . 3  |- Cgr  =  { <. x ,  y >.  |  E. n  e.  NN  ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) }
281, 2, 14, 26, 27brab 4287 . 2  |-  ( <. A ,  B >.Cgr <. C ,  D >.  <->  E. n  e.  NN  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
29 opelxp2 4723 . . . . . . . . . . 11  |-  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  ->  D  e.  ( EE `  n ) )
3029ad2antll 709 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  n
) )
31 simplrr 737 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  N
) )
32 eedimeq 24526 . . . . . . . . . 10  |-  ( ( D  e.  ( EE
`  n )  /\  D  e.  ( EE `  N ) )  ->  n  =  N )
3330, 31, 32syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
3433adantlr 695 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
35 oveq2 5866 . . . . . . . . . 10  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3635sumeq1d 12174 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 ) )
3735sumeq1d 12174 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
3836, 37eqeq12d 2297 . . . . . . . 8  |-  ( n  =  N  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
3934, 38syl 15 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
40 op1stg 6132 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1st `  <. A ,  B >. )  =  A )
4140fveq1d 5527 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 1st `  <. A ,  B >. ) `  i )  =  ( A `  i ) )
42 op2ndg 6133 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 2nd `  <. A ,  B >. )  =  B )
4342fveq1d 5527 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. A ,  B >. ) `  i )  =  ( B `  i ) )
4441, 43oveq12d 5876 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) )  =  ( ( A `  i )  -  ( B `  i ) ) )
4544oveq1d 5873 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )
4645sumeq2sdv 12177 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
47 op1stg 6132 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 1st `  <. C ,  D >. )  =  C )
4847fveq1d 5527 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 1st `  <. C ,  D >. ) `  i )  =  ( C `  i ) )
49 op2ndg 6133 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 2nd `  <. C ,  D >. )  =  D )
5049fveq1d 5527 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. C ,  D >. ) `  i )  =  ( D `  i ) )
5148, 50oveq12d 5876 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) )  =  ( ( C `  i )  -  ( D `  i ) ) )
5251oveq1d 5873 . . . . . . . . . 10  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  =  ( ( ( C `  i
)  -  ( D `
 i ) ) ^ 2 ) )
5352sumeq2sdv 12177 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
5446, 53eqeqan12d 2298 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5554ad2antrr 706 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5639, 55bitrd 244 . . . . . 6  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5756biimpd 198 . . . . 5  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5857expimpd 586 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  ->  ( ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5958rexlimdva 2667 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
60 eleenn 24524 . . . . 5  |-  ( D  e.  ( EE `  N )  ->  N  e.  NN )
6160ad2antll 709 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  N  e.  NN )
62 opelxpi 4721 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
63 opelxpi 4721 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
6462, 63anim12i 549 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  <. C ,  D >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) ) ) )
6564adantr 451 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( <. A ,  B >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) ) )
6654biimpar 471 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
6765, 66jca 518 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
68 fveq2 5525 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
6968, 68xpeq12d 4714 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  N )  X.  ( EE `  N
) ) )
7069eleq2d 2350 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7169eleq2d 2350 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7270, 71anbi12d 691 . . . . . . . 8  |-  ( n  =  N  ->  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) ) )
7372, 38anbi12d 691 . . . . . . 7  |-  ( n  =  N  ->  (
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) ) )
7473rspcev 2884 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )  /\  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7567, 74sylan2 460 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7675exp32 588 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) ) )
7761, 76mpcom 32 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
7859, 77impbid 183 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
7928, 78syl5bb 248 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   <.cop 3643   class class class wbr 4023    X. cxp 4687   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   1c1 8738    - cmin 9037   NNcn 9746   2c2 9795   ...cfz 10782   ^cexp 11104   sum_csu 12158   EEcee 24516  Cgrccgr 24518
This theorem is referenced by:  axcgrrflx  24542  axcgrtr  24543  axcgrid  24544  axsegcon  24555  ax5seglem3  24559  ax5seglem6  24562  ax5seg  24566  axlowdimlem17  24586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047  df-sum 12159  df-ee 24519  df-cgr 24521
  Copyright terms: Public domain W3C validator