Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr Structured version   Unicode version

Theorem brcgr 25831
Description: The binary relationship form of the congruence predicate. The statement  <. A ,  B >.Cgr <. C ,  D >. should be read informally as "the  N dimensional point  A is as far from  B as  C is from  D, or "the line segment  A B is congruent to the line segment  C D. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Distinct variable groups:    i, N    A, i    B, i    C, i    D, i

Proof of Theorem brcgr
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4419 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4419 . . 3  |-  <. C ,  D >.  e.  _V
3 eleq1 2495 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
43anbi1d 686 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) ) ) )
5 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
65fveq1d 5722 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 1st `  x ) `  i
)  =  ( ( 1st `  <. A ,  B >. ) `  i
) )
7 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
87fveq1d 5722 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 2nd `  x ) `  i
)  =  ( ( 2nd `  <. A ,  B >. ) `  i
) )
96, 8oveq12d 6091 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
)  =  ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) )
109oveq1d 6088 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 ) )
1110sumeq2sdv 12490 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 ) )
1211eqeq1d 2443 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) )
134, 12anbi12d 692 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `  i
)  -  ( ( 2nd `  x ) `
 i ) ) ^ 2 )  = 
sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
1413rexbidv 2718 . . 3  |-  ( x  =  <. A ,  B >.  ->  ( E. n  e.  NN  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
15 eleq1 2495 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
1615anbi2d 685 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) ) )
17 fveq2 5720 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 1st `  y
)  =  ( 1st `  <. C ,  D >. ) )
1817fveq1d 5722 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 1st `  y ) `  i
)  =  ( ( 1st `  <. C ,  D >. ) `  i
) )
19 fveq2 5720 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 2nd `  y
)  =  ( 2nd `  <. C ,  D >. ) )
2019fveq1d 5722 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 2nd `  y ) `  i
)  =  ( ( 2nd `  <. C ,  D >. ) `  i
) )
2118, 20oveq12d 6091 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
)  =  ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) )
2221oveq1d 6088 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) )
2322sumeq2sdv 12490 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )
2423eqeq2d 2446 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
2516, 24anbi12d 692 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <-> 
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
2625rexbidv 2718 . . 3  |-  ( y  =  <. C ,  D >.  ->  ( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
27 df-cgr 25824 . . 3  |- Cgr  =  { <. x ,  y >.  |  E. n  e.  NN  ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) }
281, 2, 14, 26, 27brab 4469 . 2  |-  ( <. A ,  B >.Cgr <. C ,  D >.  <->  E. n  e.  NN  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
29 opelxp2 4904 . . . . . . . . . . 11  |-  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  ->  D  e.  ( EE `  n ) )
3029ad2antll 710 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  n
) )
31 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  N
) )
32 eedimeq 25829 . . . . . . . . . 10  |-  ( ( D  e.  ( EE
`  n )  /\  D  e.  ( EE `  N ) )  ->  n  =  N )
3330, 31, 32syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
3433adantlr 696 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
35 oveq2 6081 . . . . . . . . . 10  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3635sumeq1d 12487 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 ) )
3735sumeq1d 12487 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
3836, 37eqeq12d 2449 . . . . . . . 8  |-  ( n  =  N  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
3934, 38syl 16 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
40 op1stg 6351 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1st `  <. A ,  B >. )  =  A )
4140fveq1d 5722 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 1st `  <. A ,  B >. ) `  i )  =  ( A `  i ) )
42 op2ndg 6352 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 2nd `  <. A ,  B >. )  =  B )
4342fveq1d 5722 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. A ,  B >. ) `  i )  =  ( B `  i ) )
4441, 43oveq12d 6091 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) )  =  ( ( A `  i )  -  ( B `  i ) ) )
4544oveq1d 6088 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )
4645sumeq2sdv 12490 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
47 op1stg 6351 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 1st `  <. C ,  D >. )  =  C )
4847fveq1d 5722 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 1st `  <. C ,  D >. ) `  i )  =  ( C `  i ) )
49 op2ndg 6352 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 2nd `  <. C ,  D >. )  =  D )
5049fveq1d 5722 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. C ,  D >. ) `  i )  =  ( D `  i ) )
5148, 50oveq12d 6091 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) )  =  ( ( C `  i )  -  ( D `  i ) ) )
5251oveq1d 6088 . . . . . . . . . 10  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  =  ( ( ( C `  i
)  -  ( D `
 i ) ) ^ 2 ) )
5352sumeq2sdv 12490 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
5446, 53eqeqan12d 2450 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5554ad2antrr 707 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5639, 55bitrd 245 . . . . . 6  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5756biimpd 199 . . . . 5  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5857expimpd 587 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  ->  ( ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5958rexlimdva 2822 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
60 eleenn 25827 . . . . 5  |-  ( D  e.  ( EE `  N )  ->  N  e.  NN )
6160ad2antll 710 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  N  e.  NN )
62 opelxpi 4902 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
63 opelxpi 4902 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
6462, 63anim12i 550 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  <. C ,  D >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) ) ) )
6564adantr 452 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( <. A ,  B >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) ) )
6654biimpar 472 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
6765, 66jca 519 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
68 fveq2 5720 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
6968, 68xpeq12d 4895 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  N )  X.  ( EE `  N
) ) )
7069eleq2d 2502 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7169eleq2d 2502 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7270, 71anbi12d 692 . . . . . . . 8  |-  ( n  =  N  ->  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) ) )
7372, 38anbi12d 692 . . . . . . 7  |-  ( n  =  N  ->  (
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) ) )
7473rspcev 3044 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )  /\  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7567, 74sylan2 461 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7675exp32 589 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) ) )
7761, 76mpcom 34 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
7859, 77impbid 184 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
7928, 78syl5bb 249 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   <.cop 3809   class class class wbr 4204    X. cxp 4868   ` cfv 5446  (class class class)co 6073   1stc1st 6339   2ndc2nd 6340   1c1 8983    - cmin 9283   NNcn 9992   2c2 10041   ...cfz 11035   ^cexp 11374   sum_csu 12471   EEcee 25819  Cgrccgr 25821
This theorem is referenced by:  axcgrrflx  25845  axcgrtr  25846  axcgrid  25847  axsegcon  25858  ax5seglem3  25862  ax5seglem6  25865  ax5seg  25869  axlowdimlem17  25889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-seq 11316  df-sum 12472  df-ee 25822  df-cgr 25824
  Copyright terms: Public domain W3C validator