Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr Unicode version

Theorem brcgr 25553
Description: The binary relationship form of the congruence predicate. The statement  <. A ,  B >.Cgr <. C ,  D >. should be read informally as "the  N dimensional point  A is as far from  B as  C is from  D, or "the line segment  A B is congruent to the line segment  C D. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
brcgr  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Distinct variable groups:    i, N    A, i    B, i    C, i    D, i

Proof of Theorem brcgr
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4368 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4368 . . 3  |-  <. C ,  D >.  e.  _V
3 eleq1 2447 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
43anbi1d 686 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) ) ) )
5 fveq2 5668 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
65fveq1d 5670 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 1st `  x ) `  i
)  =  ( ( 1st `  <. A ,  B >. ) `  i
) )
7 fveq2 5668 . . . . . . . . . 10  |-  ( x  =  <. A ,  B >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
87fveq1d 5670 . . . . . . . . 9  |-  ( x  =  <. A ,  B >.  ->  ( ( 2nd `  x ) `  i
)  =  ( ( 2nd `  <. A ,  B >. ) `  i
) )
96, 8oveq12d 6038 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
)  =  ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) )
109oveq1d 6035 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 ) )
1110sumeq2sdv 12425 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `
 i )  -  ( ( 2nd `  x
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 ) )
1211eqeq1d 2395 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) )
134, 12anbi12d 692 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  x ) `  i
)  -  ( ( 2nd `  x ) `
 i ) ) ^ 2 )  = 
sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
1413rexbidv 2670 . . 3  |-  ( x  =  <. A ,  B >.  ->  ( E. n  e.  NN  ( ( x  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  y  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) ) ) )
15 eleq1 2447 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
1615anbi2d 685 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) ) )
17 fveq2 5668 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 1st `  y
)  =  ( 1st `  <. C ,  D >. ) )
1817fveq1d 5670 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 1st `  y ) `  i
)  =  ( ( 1st `  <. C ,  D >. ) `  i
) )
19 fveq2 5668 . . . . . . . . . 10  |-  ( y  =  <. C ,  D >.  ->  ( 2nd `  y
)  =  ( 2nd `  <. C ,  D >. ) )
2019fveq1d 5670 . . . . . . . . 9  |-  ( y  =  <. C ,  D >.  ->  ( ( 2nd `  y ) `  i
)  =  ( ( 2nd `  <. C ,  D >. ) `  i
) )
2118, 20oveq12d 6038 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
)  =  ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) )
2221oveq1d 6035 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 )  =  ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) )
2322sumeq2sdv 12425 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `
 i )  -  ( ( 2nd `  y
) `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )
2423eqeq2d 2398 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
2516, 24anbi12d 692 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <-> 
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
2625rexbidv 2670 . . 3  |-  ( y  =  <. C ,  D >.  ->  ( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  y ) `  i
)  -  ( ( 2nd `  y ) `
 i ) ) ^ 2 ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
27 df-cgr 25546 . . 3  |- Cgr  =  { <. x ,  y >.  |  E. n  e.  NN  ( ( x  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) }
281, 2, 14, 26, 27brab 4418 . 2  |-  ( <. A ,  B >.Cgr <. C ,  D >.  <->  E. n  e.  NN  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )
29 opelxp2 4852 . . . . . . . . . . 11  |-  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  ->  D  e.  ( EE `  n ) )
3029ad2antll 710 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  n
) )
31 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  D  e.  ( EE `  N
) )
32 eedimeq 25551 . . . . . . . . . 10  |-  ( ( D  e.  ( EE
`  n )  /\  D  e.  ( EE `  N ) )  ->  n  =  N )
3330, 31, 32syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
3433adantlr 696 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  n  =  N )
35 oveq2 6028 . . . . . . . . . 10  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
3635sumeq1d 12422 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 ) )
3735sumeq1d 12422 . . . . . . . . 9  |-  ( n  =  N  ->  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
3836, 37eqeq12d 2401 . . . . . . . 8  |-  ( n  =  N  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
3934, 38syl 16 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 ) ) )
40 op1stg 6298 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1st `  <. A ,  B >. )  =  A )
4140fveq1d 5670 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 1st `  <. A ,  B >. ) `  i )  =  ( A `  i ) )
42 op2ndg 6299 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 2nd `  <. A ,  B >. )  =  B )
4342fveq1d 5670 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. A ,  B >. ) `  i )  =  ( B `  i ) )
4441, 43oveq12d 6038 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) )  =  ( ( A `  i )  -  ( B `  i ) ) )
4544oveq1d 6035 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )
4645sumeq2sdv 12425 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
47 op1stg 6298 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 1st `  <. C ,  D >. )  =  C )
4847fveq1d 5670 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 1st `  <. C ,  D >. ) `  i )  =  ( C `  i ) )
49 op2ndg 6299 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 2nd `  <. C ,  D >. )  =  D )
5049fveq1d 5670 . . . . . . . . . . . 12  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( 2nd `  <. C ,  D >. ) `  i )  =  ( D `  i ) )
5148, 50oveq12d 6038 . . . . . . . . . . 11  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) )  =  ( ( C `  i )  -  ( D `  i ) ) )
5251oveq1d 6035 . . . . . . . . . 10  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  =  ( ( ( C `  i
)  -  ( D `
 i ) ) ^ 2 ) )
5352sumeq2sdv 12425 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
5446, 53eqeqan12d 2402 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i
)  -  ( ( 2nd `  <. A ,  B >. ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  (
( 2nd `  <. C ,  D >. ) `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5554ad2antrr 707 . . . . . . 7  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5639, 55bitrd 245 . . . . . 6  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
5756biimpd 199 . . . . 5  |-  ( ( ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  /\  ( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) ) )  ->  ( sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5857expimpd 587 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  n  e.  NN )  ->  ( ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
5958rexlimdva 2773 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
60 eleenn 25549 . . . . 5  |-  ( D  e.  ( EE `  N )  ->  N  e.  NN )
6160ad2antll 710 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  N  e.  NN )
62 opelxpi 4850 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
63 opelxpi 4850 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
6462, 63anim12i 550 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  <. C ,  D >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) ) ) )
6564adantr 452 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( <. A ,  B >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) ) )
6654biimpar 472 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )
6765, 66jca 519 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  ->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
68 fveq2 5668 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
6968, 68xpeq12d 4843 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  N )  X.  ( EE `  N
) ) )
7069eleq2d 2454 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7169eleq2d 2454 . . . . . . . . 9  |-  ( n  =  N  ->  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
7270, 71anbi12d 692 . . . . . . . 8  |-  ( n  =  N  ->  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) ) )
7372, 38anbi12d 692 . . . . . . 7  |-  ( n  =  N  ->  (
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) ) )
7473rspcev 2995 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )  /\  sum_ i  e.  ( 1 ... N
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7567, 74sylan2 461 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) ) )
7675exp32 589 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) ) )
7761, 76mpcom 34 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  (
( 2nd `  <. A ,  B >. ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i )  -  ( ( 2nd `  <. C ,  D >. ) `  i ) ) ^ 2 ) ) ) )
7859, 77impbid 184 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) ) )  /\  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. A ,  B >. ) `  i )  -  ( ( 2nd `  <. A ,  B >. ) `  i ) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n ) ( ( ( ( 1st `  <. C ,  D >. ) `  i
)  -  ( ( 2nd `  <. C ,  D >. ) `  i
) ) ^ 2 ) )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )
7928, 78syl5bb 249 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2650   <.cop 3760   class class class wbr 4153    X. cxp 4816   ` cfv 5394  (class class class)co 6020   1stc1st 6286   2ndc2nd 6287   1c1 8924    - cmin 9223   NNcn 9932   2c2 9981   ...cfz 10975   ^cexp 11309   sum_csu 12406   EEcee 25541  Cgrccgr 25543
This theorem is referenced by:  axcgrrflx  25567  axcgrtr  25568  axcgrid  25569  axsegcon  25580  ax5seglem3  25584  ax5seglem6  25587  ax5seg  25591  axlowdimlem17  25611
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-seq 11251  df-sum 12407  df-ee 25544  df-cgr 25546
  Copyright terms: Public domain W3C validator