Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcolinear Unicode version

Theorem brcolinear 24754
Description: The binary relationship form of the colinearity predicate. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
brcolinear  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )

Proof of Theorem brcolinear
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 brcolinear2 24753 . . . 4  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
213adant1 973 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  Colinear  <. B ,  C >.  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
32adantl 452 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
4 simpr 447 . . . 4  |-  ( ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )
54rexlimivw 2676 . . 3  |-  ( E. n  e.  NN  (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )
6 fveq2 5541 . . . . . . . 8  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
76eleq2d 2363 . . . . . . 7  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
86eleq2d 2363 . . . . . . 7  |-  ( n  =  N  ->  ( B  e.  ( EE `  n )  <->  B  e.  ( EE `  N ) ) )
96eleq2d 2363 . . . . . . 7  |-  ( n  =  N  ->  ( C  e.  ( EE `  n )  <->  C  e.  ( EE `  N ) ) )
107, 8, 93anbi123d 1252 . . . . . 6  |-  ( n  =  N  ->  (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) ) )
1110anbi1d 685 . . . . 5  |-  ( n  =  N  ->  (
( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  <->  ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
1211rspcev 2897 . . . 4  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )  ->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
1312expr 598 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  ->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
145, 13impbid2 195 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  <->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
153, 14bitrd 244 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   <.cop 3656   class class class wbr 4039   ` cfv 5271   NNcn 9762   EEcee 24588    Btwn cbtwn 24589    Colinear ccolin 24732
This theorem is referenced by:  colinearperm1  24757  colinearperm3  24758  colineartriv1  24762  colineartriv2  24763  btwncolinear1  24764  colinearxfr  24770  lineext  24771  fscgr  24775  colinbtwnle  24813  broutsideof2  24817  lineunray  24842  lineelsb2  24843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-iota 5235  df-fv 5279  df-oprab 5878  df-colinear 24736
  Copyright terms: Public domain W3C validator