MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdifun Unicode version

Theorem brdifun 6861
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
swoer.1  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
Assertion
Ref Expression
brdifun  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )

Proof of Theorem brdifun
StepHypRef Expression
1 opelxpi 4843 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  -> 
<. A ,  B >.  e.  ( X  X.  X
) )
2 df-br 4147 . . . 4  |-  ( A ( X  X.  X
) B  <->  <. A ,  B >.  e.  ( X  X.  X ) )
31, 2sylibr 204 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  A ( X  X.  X ) B )
4 swoer.1 . . . . . 6  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
54breqi 4152 . . . . 5  |-  ( A R B  <->  A (
( X  X.  X
)  \  (  .<  u.  `'  .<  ) ) B )
6 brdif 4194 . . . . 5  |-  ( A ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
) B  <->  ( A
( X  X.  X
) B  /\  -.  A (  .<  u.  `'  .<  ) B ) )
75, 6bitri 241 . . . 4  |-  ( A R B  <->  ( A
( X  X.  X
) B  /\  -.  A (  .<  u.  `'  .<  ) B ) )
87baib 872 . . 3  |-  ( A ( X  X.  X
) B  ->  ( A R B  <->  -.  A
(  .<  u.  `'  .<  ) B ) )
93, 8syl 16 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  A (  .<  u.  `'  .<  ) B ) )
10 brun 4192 . . . 4  |-  ( A (  .<  u.  `'  .<  ) B  <->  ( A  .<  B  \/  A `'  .<  B ) )
11 brcnvg 4986 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A `'  .<  B  <-> 
B  .<  A ) )
1211orbi2d 683 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( A  .<  B  \/  A `'  .<  B )  <->  ( A  .<  B  \/  B  .<  A ) ) )
1310, 12syl5bb 249 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A (  .<  u.  `'  .<  ) B  <->  ( A  .<  B  \/  B  .<  A ) ) )
1413notbid 286 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( -.  A ( 
.<  u.  `'  .<  ) B 
<->  -.  ( A  .<  B  \/  B  .<  A ) ) )
159, 14bitrd 245 1  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    \ cdif 3253    u. cun 3254   <.cop 3753   class class class wbr 4146    X. cxp 4809   `'ccnv 4810
This theorem is referenced by:  swoer  6862  swoord1  6863  swoord2  6864  swoso  6865
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-br 4147  df-opab 4201  df-xp 4817  df-cnv 4819
  Copyright terms: Public domain W3C validator