MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom5 Unicode version

Theorem brdom5 8244
Description: An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2  |-  B  e. 
_V
Assertion
Ref Expression
brdom5  |-  ( A  ~<_  B  <->  E. f ( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
Distinct variable groups:    x, f,
y, A    B, f, x, y

Proof of Theorem brdom5
StepHypRef Expression
1 brdom3.2 . . . 4  |-  B  e. 
_V
21brdom3 8243 . . 3  |-  ( A  ~<_  B  <->  E. f ( A. x E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y f
x ) )
3 alral 2677 . . . . 5  |-  ( A. x E* y  x f y  ->  A. x  e.  B  E* y  x f y )
43anim1i 551 . . . 4  |-  ( ( A. x E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x )  -> 
( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
54eximi 1576 . . 3  |-  ( E. f ( A. x E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  E. f
( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
62, 5sylbi 187 . 2  |-  ( A  ~<_  B  ->  E. f
( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
7 inss2 3466 . . . . . . . . . . . . . 14  |-  ( f  i^i  ( B  X.  A ) )  C_  ( B  X.  A
)
8 dmss 4960 . . . . . . . . . . . . . 14  |-  ( ( f  i^i  ( B  X.  A ) ) 
C_  ( B  X.  A )  ->  dom  ( f  i^i  ( B  X.  A ) ) 
C_  dom  ( B  X.  A ) )
97, 8ax-mp 8 . . . . . . . . . . . . 13  |-  dom  (
f  i^i  ( B  X.  A ) )  C_  dom  ( B  X.  A
)
10 dmxpss 5189 . . . . . . . . . . . . 13  |-  dom  ( B  X.  A )  C_  B
119, 10sstri 3264 . . . . . . . . . . . 12  |-  dom  (
f  i^i  ( B  X.  A ) )  C_  B
1211sseli 3252 . . . . . . . . . . 11  |-  ( x  e.  dom  ( f  i^i  ( B  X.  A ) )  ->  x  e.  B )
13 inss1 3465 . . . . . . . . . . . . 13  |-  ( f  i^i  ( B  X.  A ) )  C_  f
1413ssbri 4146 . . . . . . . . . . . 12  |-  ( x ( f  i^i  ( B  X.  A ) ) y  ->  x f
y )
1514moimi 2256 . . . . . . . . . . 11  |-  ( E* y  x f y  ->  E* y  x ( f  i^i  ( B  X.  A ) ) y )
1612, 15imim12i 53 . . . . . . . . . 10  |-  ( ( x  e.  B  ->  E* y  x f
y )  ->  (
x  e.  dom  (
f  i^i  ( B  X.  A ) )  ->  E* y  x (
f  i^i  ( B  X.  A ) ) y ) )
1716ralimi2 2691 . . . . . . . . 9  |-  ( A. x  e.  B  E* y  x f y  ->  A. x  e.  dom  ( f  i^i  ( B  X.  A ) ) E* y  x ( f  i^i  ( B  X.  A ) ) y )
18 relxp 4876 . . . . . . . . . 10  |-  Rel  ( B  X.  A )
19 relin2 4886 . . . . . . . . . 10  |-  ( Rel  ( B  X.  A
)  ->  Rel  ( f  i^i  ( B  X.  A ) ) )
2018, 19ax-mp 8 . . . . . . . . 9  |-  Rel  (
f  i^i  ( B  X.  A ) )
2117, 20jctil 523 . . . . . . . 8  |-  ( A. x  e.  B  E* y  x f y  -> 
( Rel  ( f  i^i  ( B  X.  A
) )  /\  A. x  e.  dom  ( f  i^i  ( B  X.  A ) ) E* y  x ( f  i^i  ( B  X.  A ) ) y ) )
22 dffun7 5362 . . . . . . . 8  |-  ( Fun  ( f  i^i  ( B  X.  A ) )  <-> 
( Rel  ( f  i^i  ( B  X.  A
) )  /\  A. x  e.  dom  ( f  i^i  ( B  X.  A ) ) E* y  x ( f  i^i  ( B  X.  A ) ) y ) )
2321, 22sylibr 203 . . . . . . 7  |-  ( A. x  e.  B  E* y  x f y  ->  Fun  ( f  i^i  ( B  X.  A ) ) )
24 funfn 5365 . . . . . . 7  |-  ( Fun  ( f  i^i  ( B  X.  A ) )  <-> 
( f  i^i  ( B  X.  A ) )  Fn  dom  ( f  i^i  ( B  X.  A ) ) )
2523, 24sylib 188 . . . . . 6  |-  ( A. x  e.  B  E* y  x f y  -> 
( f  i^i  ( B  X.  A ) )  Fn  dom  ( f  i^i  ( B  X.  A ) ) )
26 rninxp 5199 . . . . . . 7  |-  ( ran  ( f  i^i  ( B  X.  A ) )  =  A  <->  A. x  e.  A  E. y  e.  B  y f
x )
2726biimpri 197 . . . . . 6  |-  ( A. x  e.  A  E. y  e.  B  y
f x  ->  ran  ( f  i^i  ( B  X.  A ) )  =  A )
2825, 27anim12i 549 . . . . 5  |-  ( ( A. x  e.  B  E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  (
( f  i^i  ( B  X.  A ) )  Fn  dom  ( f  i^i  ( B  X.  A ) )  /\  ran  ( f  i^i  ( B  X.  A ) )  =  A ) )
29 df-fo 5343 . . . . 5  |-  ( ( f  i^i  ( B  X.  A ) ) : dom  ( f  i^i  ( B  X.  A ) ) -onto-> A  <-> 
( ( f  i^i  ( B  X.  A
) )  Fn  dom  ( f  i^i  ( B  X.  A ) )  /\  ran  ( f  i^i  ( B  X.  A ) )  =  A ) )
3028, 29sylibr 203 . . . 4  |-  ( ( A. x  e.  B  E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  (
f  i^i  ( B  X.  A ) ) : dom  ( f  i^i  ( B  X.  A
) ) -onto-> A )
31 vex 2867 . . . . . . 7  |-  f  e. 
_V
3231inex1 4236 . . . . . 6  |-  ( f  i^i  ( B  X.  A ) )  e. 
_V
3332dmex 5023 . . . . 5  |-  dom  (
f  i^i  ( B  X.  A ) )  e. 
_V
3433fodom 8239 . . . 4  |-  ( ( f  i^i  ( B  X.  A ) ) : dom  ( f  i^i  ( B  X.  A ) ) -onto-> A  ->  A  ~<_  dom  (
f  i^i  ( B  X.  A ) ) )
35 ssdomg 6995 . . . . . 6  |-  ( B  e.  _V  ->  ( dom  ( f  i^i  ( B  X.  A ) ) 
C_  B  ->  dom  ( f  i^i  ( B  X.  A ) )  ~<_  B ) )
361, 11, 35mp2 17 . . . . 5  |-  dom  (
f  i^i  ( B  X.  A ) )  ~<_  B
37 domtr 7002 . . . . 5  |-  ( ( A  ~<_  dom  ( f  i^i  ( B  X.  A
) )  /\  dom  ( f  i^i  ( B  X.  A ) )  ~<_  B )  ->  A  ~<_  B )
3836, 37mpan2 652 . . . 4  |-  ( A  ~<_  dom  ( f  i^i  ( B  X.  A
) )  ->  A  ~<_  B )
3930, 34, 383syl 18 . . 3  |-  ( ( A. x  e.  B  E* y  x f
y  /\  A. x  e.  A  E. y  e.  B  y f
x )  ->  A  ~<_  B )
4039exlimiv 1634 . 2  |-  ( E. f ( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x )  ->  A  ~<_  B )
416, 40impbii 180 1  |-  ( A  ~<_  B  <->  E. f ( A. x  e.  B  E* y  x f y  /\  A. x  e.  A  E. y  e.  B  y
f x ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wal 1540   E.wex 1541    = wceq 1642    e. wcel 1710   E*wmo 2210   A.wral 2619   E.wrex 2620   _Vcvv 2864    i^i cin 3227    C_ wss 3228   class class class wbr 4104    X. cxp 4769   dom cdm 4771   ran crn 4772   Rel wrel 4776   Fun wfun 5331    Fn wfn 5332   -onto->wfo 5335    ~<_ cdom 6949
This theorem is referenced by:  brdom6disj  8247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-ac2 8179
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-suc 4480  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-card 7662  df-acn 7665  df-ac 7833
  Copyright terms: Public domain W3C validator