Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdomaing Structured version   Unicode version

Theorem brdomaing 25772
Description: Closed form of brdomain 25770. (Contributed by Scott Fenton, 2-May-2014.)
Assertion
Ref Expression
brdomaing  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ADomain B  <->  B  =  dom  A ) )

Proof of Theorem brdomaing
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4207 . . 3  |-  ( a  =  A  ->  (
aDomain b  <->  ADomain b ) )
2 dmeq 5062 . . . 4  |-  ( a  =  A  ->  dom  a  =  dom  A )
32eqeq2d 2446 . . 3  |-  ( a  =  A  ->  (
b  =  dom  a  <->  b  =  dom  A ) )
41, 3bibi12d 313 . 2  |-  ( a  =  A  ->  (
( aDomain b  <->  b  =  dom  a )  <->  ( ADomain b 
<->  b  =  dom  A
) ) )
5 breq2 4208 . . 3  |-  ( b  =  B  ->  ( ADomain b  <->  ADomain B ) )
6 eqeq1 2441 . . 3  |-  ( b  =  B  ->  (
b  =  dom  A  <->  B  =  dom  A ) )
75, 6bibi12d 313 . 2  |-  ( b  =  B  ->  (
( ADomain b  <->  b  =  dom  A )  <->  ( ADomain B  <-> 
B  =  dom  A
) ) )
8 vex 2951 . . 3  |-  a  e. 
_V
9 vex 2951 . . 3  |-  b  e. 
_V
108, 9brdomain 25770 . 2  |-  ( aDomain b  <->  b  =  dom  a )
114, 7, 10vtocl2g 3007 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ADomain B  <->  B  =  dom  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   dom cdm 4870  Domaincdomain 25679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-eprel 4486  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fo 5452  df-fv 5454  df-1st 6341  df-2nd 6342  df-symdif 25655  df-txp 25690  df-image 25700  df-domain 25703
  Copyright terms: Public domain W3C validator