MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brecop2 Structured version   Unicode version

Theorem brecop2 6990
Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.)
Hypotheses
Ref Expression
brecop2.1  |-  .~  e.  _V
brecop2.5  |-  dom  .~  =  ( G  X.  G )
brecop2.6  |-  H  =  ( ( G  X.  G ) /.  .~  )
brecop2.7  |-  R  C_  ( H  X.  H
)
brecop2.8  |-  .<_  C_  ( G  X.  G )
brecop2.9  |-  -.  (/)  e.  G
brecop2.10  |-  dom  .+  =  ( G  X.  G )
brecop2.11  |-  ( ( ( A  e.  G  /\  B  e.  G
)  /\  ( C  e.  G  /\  D  e.  G ) )  -> 
( [ <. A ,  B >. ]  .~  R [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  .<_  ( B 
.+  C ) ) )
Assertion
Ref Expression
brecop2  |-  ( [
<. A ,  B >. ]  .~  R [ <. C ,  D >. ]  .~  <->  ( A  .+  D ) 
.<_  ( B  .+  C
) )

Proof of Theorem brecop2
StepHypRef Expression
1 brecop2.7 . . . 4  |-  R  C_  ( H  X.  H
)
21brel 4918 . . 3  |-  ( [
<. A ,  B >. ]  .~  R [ <. C ,  D >. ]  .~  ->  ( [ <. A ,  B >. ]  .~  e.  H  /\  [ <. C ,  D >. ]  .~  e.  H ) )
3 brecop2.5 . . . . . . 7  |-  dom  .~  =  ( G  X.  G )
4 ecelqsdm 6966 . . . . . . 7  |-  ( ( dom  .~  =  ( G  X.  G )  /\  [ <. A ,  B >. ]  .~  e.  ( ( G  X.  G ) /.  .~  ) )  ->  <. A ,  B >.  e.  ( G  X.  G ) )
53, 4mpan 652 . . . . . 6  |-  ( [
<. A ,  B >. ]  .~  e.  ( ( G  X.  G ) /.  .~  )  ->  <. A ,  B >.  e.  ( G  X.  G
) )
6 brecop2.6 . . . . . 6  |-  H  =  ( ( G  X.  G ) /.  .~  )
75, 6eleq2s 2527 . . . . 5  |-  ( [
<. A ,  B >. ]  .~  e.  H  ->  <. A ,  B >.  e.  ( G  X.  G
) )
8 opelxp 4900 . . . . 5  |-  ( <. A ,  B >.  e.  ( G  X.  G
)  <->  ( A  e.  G  /\  B  e.  G ) )
97, 8sylib 189 . . . 4  |-  ( [
<. A ,  B >. ]  .~  e.  H  -> 
( A  e.  G  /\  B  e.  G
) )
10 ecelqsdm 6966 . . . . . . 7  |-  ( ( dom  .~  =  ( G  X.  G )  /\  [ <. C ,  D >. ]  .~  e.  ( ( G  X.  G ) /.  .~  ) )  ->  <. C ,  D >.  e.  ( G  X.  G ) )
113, 10mpan 652 . . . . . 6  |-  ( [
<. C ,  D >. ]  .~  e.  ( ( G  X.  G ) /.  .~  )  ->  <. C ,  D >.  e.  ( G  X.  G
) )
1211, 6eleq2s 2527 . . . . 5  |-  ( [
<. C ,  D >. ]  .~  e.  H  ->  <. C ,  D >.  e.  ( G  X.  G
) )
13 opelxp 4900 . . . . 5  |-  ( <. C ,  D >.  e.  ( G  X.  G
)  <->  ( C  e.  G  /\  D  e.  G ) )
1412, 13sylib 189 . . . 4  |-  ( [
<. C ,  D >. ]  .~  e.  H  -> 
( C  e.  G  /\  D  e.  G
) )
159, 14anim12i 550 . . 3  |-  ( ( [ <. A ,  B >. ]  .~  e.  H  /\  [ <. C ,  D >. ]  .~  e.  H
)  ->  ( ( A  e.  G  /\  B  e.  G )  /\  ( C  e.  G  /\  D  e.  G
) ) )
162, 15syl 16 . 2  |-  ( [
<. A ,  B >. ]  .~  R [ <. C ,  D >. ]  .~  ->  ( ( A  e.  G  /\  B  e.  G )  /\  ( C  e.  G  /\  D  e.  G )
) )
17 brecop2.8 . . . . 5  |-  .<_  C_  ( G  X.  G )
1817brel 4918 . . . 4  |-  ( ( A  .+  D ) 
.<_  ( B  .+  C
)  ->  ( ( A  .+  D )  e.  G  /\  ( B 
.+  C )  e.  G ) )
19 brecop2.10 . . . . . 6  |-  dom  .+  =  ( G  X.  G )
20 brecop2.9 . . . . . 6  |-  -.  (/)  e.  G
2119, 20ndmovrcl 6225 . . . . 5  |-  ( ( A  .+  D )  e.  G  ->  ( A  e.  G  /\  D  e.  G )
)
2219, 20ndmovrcl 6225 . . . . 5  |-  ( ( B  .+  C )  e.  G  ->  ( B  e.  G  /\  C  e.  G )
)
2321, 22anim12i 550 . . . 4  |-  ( ( ( A  .+  D
)  e.  G  /\  ( B  .+  C )  e.  G )  -> 
( ( A  e.  G  /\  D  e.  G )  /\  ( B  e.  G  /\  C  e.  G )
) )
2418, 23syl 16 . . 3  |-  ( ( A  .+  D ) 
.<_  ( B  .+  C
)  ->  ( ( A  e.  G  /\  D  e.  G )  /\  ( B  e.  G  /\  C  e.  G
) ) )
25 an42 799 . . 3  |-  ( ( ( A  e.  G  /\  D  e.  G
)  /\  ( B  e.  G  /\  C  e.  G ) )  <->  ( ( A  e.  G  /\  B  e.  G )  /\  ( C  e.  G  /\  D  e.  G
) ) )
2624, 25sylib 189 . 2  |-  ( ( A  .+  D ) 
.<_  ( B  .+  C
)  ->  ( ( A  e.  G  /\  B  e.  G )  /\  ( C  e.  G  /\  D  e.  G
) ) )
27 brecop2.11 . 2  |-  ( ( ( A  e.  G  /\  B  e.  G
)  /\  ( C  e.  G  /\  D  e.  G ) )  -> 
( [ <. A ,  B >. ]  .~  R [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  .<_  ( B 
.+  C ) ) )
2816, 26, 27pm5.21nii 343 1  |-  ( [
<. A ,  B >. ]  .~  R [ <. C ,  D >. ]  .~  <->  ( A  .+  D ) 
.<_  ( B  .+  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948    C_ wss 3312   (/)c0 3620   <.cop 3809   class class class wbr 4204    X. cxp 4868   dom cdm 4870  (class class class)co 6073   [cec 6895   /.cqs 6896
This theorem is referenced by:  ltsrpr  8944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fv 5454  df-ov 6076  df-ec 6899  df-qs 6903
  Copyright terms: Public domain W3C validator