MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breq123d Unicode version

Theorem breq123d 4053
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breq123d.2  |-  ( ph  ->  R  =  S )
breq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
breq123d  |-  ( ph  ->  ( A R C  <-> 
B S D ) )

Proof of Theorem breq123d
StepHypRef Expression
1 breq1d.1 . . 3  |-  ( ph  ->  A  =  B )
2 breq123d.3 . . 3  |-  ( ph  ->  C  =  D )
31, 2breq12d 4052 . 2  |-  ( ph  ->  ( A R C  <-> 
B R D ) )
4 breq123d.2 . . 3  |-  ( ph  ->  R  =  S )
54breqd 4050 . 2  |-  ( ph  ->  ( B R D  <-> 
B S D ) )
63, 5bitrd 244 1  |-  ( ph  ->  ( A R C  <-> 
B S D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632   class class class wbr 4039
This theorem is referenced by:  sbcbrg  4088  fmptco  5707  xpsle  13499  invfuc  13864  yonedainv  14071  fmptcof2  23244  fnwe2val  27249  aomclem8  27262  iscvlat  30135  paddfval  30608  lhpset  30806  tendofset  31569  diaffval  31842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040
  Copyright terms: Public domain W3C validator