MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqan12rd Unicode version

Theorem breqan12rd 4196
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
breqan12rd  |-  ( ( ps  /\  ph )  ->  ( A R C  <-> 
B R D ) )

Proof of Theorem breqan12rd
StepHypRef Expression
1 breq1d.1 . . 3  |-  ( ph  ->  A  =  B )
2 breqan12i.2 . . 3  |-  ( ps 
->  C  =  D
)
31, 2breqan12d 4195 . 2  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )
43ancoms 440 1  |-  ( ( ps  /\  ph )  ->  ( A R C  <-> 
B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649   class class class wbr 4180
This theorem is referenced by:  f1oweALT  6041  ledivdiv  9863  xltnegi  10766  ramub1lem1  13357  dvferm1  19830  dvferm2  19832  dvivthlem1  19853  ulmdvlem3  20279  lgsquad  21102  areacirclem5  26193  areacirclem6  26194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181
  Copyright terms: Public domain W3C validator