MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp Structured version   Unicode version

Theorem brinxp 4940
Description: Intersection of binary relation with cross product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 4939 . . 3  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
2 df-3an 938 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
31, 2bitri 241 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
43baibr 873 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1725    i^i cin 3319   class class class wbr 4212    X. cxp 4876
This theorem is referenced by:  poinxp  4941  soinxp  4942  frinxp  4943  seinxp  4944  exfo  5887  isores2  6053  ltpiord  8764  ordpinq  8820  pwsleval  13715  tsrss  14655  ordtrest  17266  ordtrest2lem  17267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884
  Copyright terms: Public domain W3C validator