Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp2 Structured version   Unicode version

Theorem brinxp2 4931
 Description: Intersection of binary relation with cross product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 4251 . 2
2 ancom 438 . 2
3 brxp 4901 . . . 4
43anbi1i 677 . . 3
5 df-3an 938 . . 3
64, 5bitr4i 244 . 2
71, 2, 63bitri 263 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   w3a 936   wcel 1725   cin 3311   class class class wbr 4204   cxp 4868 This theorem is referenced by:  brinxp  4932  fncnv  5507  erinxp  6970  fpwwe2lem8  8504  fpwwe2lem9  8505  fpwwe2lem12  8508  nqerf  8799  nqerid  8802  isstruct  13471  pwsle  13706  psss  14638  psssdm2  14639  pi1cpbl  19061  pi1grplem  19066 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876
 Copyright terms: Public domain W3C validator