Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof2 Structured version   Unicode version

Theorem broutsideof2 26057
Description: Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )

Proof of Theorem broutsideof2
StepHypRef Expression
1 broutsideof 26056 . 2  |-  ( POutsideOf <. A ,  B >.  <->  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )
2 btwntriv1 25951 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  A  Btwn  <. A ,  B >. )
323adant3r1 1163 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  Btwn  <. A ,  B >. )
4 breq1 4216 . . . . . . . 8  |-  ( A  =  P  ->  ( A  Btwn  <. A ,  B >.  <-> 
P  Btwn  <. A ,  B >. ) )
53, 4syl5ibcom 213 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  =  P  ->  P  Btwn  <. A ,  B >. ) )
65necon3bd 2639 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( -.  P  Btwn  <. A ,  B >.  ->  A  =/=  P ) )
76imp 420 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  -.  P  Btwn  <. A ,  B >. )  ->  A  =/=  P )
87adantrl 698 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  A  =/=  P )
9 btwntriv2 25947 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  B  Btwn  <. A ,  B >. )
1093adant3r1 1163 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  Btwn  <. A ,  B >. )
11 breq1 4216 . . . . . . . 8  |-  ( B  =  P  ->  ( B  Btwn  <. A ,  B >.  <-> 
P  Btwn  <. A ,  B >. ) )
1210, 11syl5ibcom 213 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  =  P  ->  P  Btwn  <. A ,  B >. ) )
1312necon3bd 2639 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( -.  P  Btwn  <. A ,  B >.  ->  B  =/=  P ) )
1413imp 420 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  -.  P  Btwn  <. A ,  B >. )  ->  B  =/=  P )
1514adantrl 698 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  B  =/=  P )
16 brcolinear 25994 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Colinear  <. A ,  B >. 
<->  ( P  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  P >.  \/  B  Btwn  <. P ,  A >. ) ) )
17 pm2.24 104 . . . . . . . 8  |-  ( P 
Btwn  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
1817a1i 11 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
19 3anrot 942 . . . . . . . . . 10  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )
20 btwncom 25949 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >. 
<->  A  Btwn  <. P ,  B >. ) )
2119, 20sylan2b 463 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >. 
<->  A  Btwn  <. P ,  B >. ) )
22 orc 376 . . . . . . . . 9  |-  ( A 
Btwn  <. P ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
2321, 22syl6bi 221 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
2423a1dd 45 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
25 olc 375 . . . . . . . . 9  |-  ( B 
Btwn  <. P ,  A >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
2625a1d 24 . . . . . . . 8  |-  ( B 
Btwn  <. P ,  A >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
2726a1i 11 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2818, 24, 273jaod 1249 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( P  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  P >.  \/  B  Btwn  <. P ,  A >. )  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2916, 28sylbid 208 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Colinear  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
3029imp32 424 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
318, 15, 303jca 1135 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  ( A  =/=  P  /\  B  =/= 
P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
32 simp3 960 . . . . . 6  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  -> 
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
33 3ancomb 946 . . . . . . . 8  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( P  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
34 btwncolinear2 26005 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  P  Colinear  <. A ,  B >. ) )
3533, 34sylan2b 463 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  P  Colinear  <. A ,  B >. ) )
36 btwncolinear1 26004 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  P  Colinear  <. A ,  B >. ) )
3735, 36jaod 371 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  P  Colinear  <. A ,  B >. ) )
3832, 37syl5 31 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  ->  P  Colinear  <. A ,  B >. ) )
3938imp 420 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  P  Colinear  <. A ,  B >. )
40 simpr2 965 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  A  =/=  P )
4140neneqd 2618 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  A  =  P )
42 simprl1 1003 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  A  Btwn  <. P ,  B >. )
43 simprr 735 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. A ,  B >. )
44 simpl 445 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
45 simpr2 965 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
46 simpr1 964 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
47 simpr3 966 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
48 btwnswapid 25952 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
4944, 45, 46, 47, 48syl13anc 1187 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
5049adantr 453 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  ( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
5142, 43, 50mp2and 662 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  A  =  P )
5251expr 600 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  ( P  Btwn  <. A ,  B >.  ->  A  =  P ) )
5341, 52mtod 171 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  P  Btwn  <. A ,  B >. )
54533exp2 1172 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
55 simpr3 966 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  B  =/=  P )
5655neneqd 2618 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  B  =  P )
57 simprl1 1003 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  B  Btwn  <. P ,  A >. )
58 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. A ,  B >. )
5944, 46, 45, 47, 58btwncomand 25950 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. B ,  A >. )
60 3anrot 942 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ( EE
`  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  <->  ( P  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
61 btwnswapid 25952 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6260, 61sylan2br 464 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6362adantr 453 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  ( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6457, 59, 63mp2and 662 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  B  =  P )
6564expr 600 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  ( P  Btwn  <. A ,  B >.  ->  B  =  P ) )
6656, 65mtod 171 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  P  Btwn  <. A ,  B >. )
67663exp2 1172 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
6854, 67jaod 371 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
6968com12 30 . . . . . 6  |-  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
7069com4l 81 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  =/=  P  ->  ( B  =/=  P  ->  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
71703imp2 1169 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  -.  P  Btwn  <. A ,  B >. )
7239, 71jca 520 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )
7331, 72impbida 807 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. )  <->  ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
741, 73syl5bb 250 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    \/ w3o 936    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   <.cop 3818   class class class wbr 4213   ` cfv 5455   NNcn 10001   EEcee 25828    Btwn cbtwn 25829    Colinear ccolin 25972  OutsideOfcoutsideof 26054
This theorem is referenced by:  outsidene1  26058  outsidene2  26059  btwnoutside  26060  broutsideof3  26061  outsideofcom  26063  outsideoftr  26064  outsideofeq  26065  outsideofeu  26066  lineunray  26082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-oi 7480  df-card 7827  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-ico 10923  df-icc 10924  df-fz 11045  df-fzo 11137  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-clim 12283  df-sum 12481  df-ee 25831  df-btwn 25832  df-cgr 25833  df-colinear 25976  df-outsideof 26055
  Copyright terms: Public domain W3C validator