Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof3 Unicode version

Theorem broutsideof3 24749
Description: Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) ) ) )
Distinct variable groups:    N, c    A, c    B, c    P, c

Proof of Theorem broutsideof3
StepHypRef Expression
1 broutsideof2 24745 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2 simpl 443 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
3 simpr3 963 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
4 simpr1 961 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
5 btwndiff 24650 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) )
62, 3, 4, 5syl3anc 1182 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. c  e.  ( EE `  N ) ( P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )
76adantr 451 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) )
8 df-3an 936 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  <->  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) ) )
9 3anass 938 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c )  <->  ( (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. )  /\  ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) ) )
10 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  =/=  c )
1110necomd 2529 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  -> 
c  =/=  P )
12 simp1 955 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  N  e.  NN )
13 simp23 990 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
14 simp22 989 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
15 simp21 988 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
16 simp3 957 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
17 simpr1r 1013 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  A  Btwn  <. P ,  B >. )
1812, 14, 15, 13, 17btwncomand 24638 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  A  Btwn  <. B ,  P >. )
19 simpr2 962 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. B ,  c
>. )
2012, 13, 14, 15, 16, 18, 19btwnexch3and 24644 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. A ,  c
>. )
2111, 20, 193jca 1132 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  -> 
( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) )
228, 9, 21syl2anbr 466 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) ) )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )
2322expr 598 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( ( P  Btwn  <. B ,  c
>.  /\  P  =/=  c
)  ->  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
2423an32s 779 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  /\  c  e.  ( EE `  N
) )  ->  (
( P  Btwn  <. B , 
c >.  /\  P  =/=  c )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
2524reximdva 2655 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( E. c  e.  ( EE `  N ) ( P 
Btwn  <. B ,  c
>.  /\  P  =/=  c
)  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
267, 25mpd 14 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) )
2726expr 598 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( A  Btwn  <. P ,  B >.  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
28 simpr2 962 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
29 btwndiff 24650 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) )
302, 28, 4, 29syl3anc 1182 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. c  e.  ( EE `  N ) ( P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )
3130adantr 451 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) )
32 3anass 938 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c )  <->  ( (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. )  /\  ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) ) )
33 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  =/=  c )
3433necomd 2529 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  -> 
c  =/=  P )
35 simpr2 962 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. A ,  c
>. )
36 simpr1r 1013 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  B  Btwn  <. P ,  A >. )
3712, 13, 15, 14, 36btwncomand 24638 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  B  Btwn  <. A ,  P >. )
3812, 14, 13, 15, 16, 37, 35btwnexch3and 24644 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. B ,  c
>. )
3934, 35, 383jca 1132 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  -> 
( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) )
408, 32, 39syl2anbr 466 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) ) )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )
4140expr 598 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( ( P  Btwn  <. A ,  c
>.  /\  P  =/=  c
)  ->  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4241an32s 779 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  /\  c  e.  ( EE `  N
) )  ->  (
( P  Btwn  <. A , 
c >.  /\  P  =/=  c )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
4342reximdva 2655 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( E. c  e.  ( EE `  N ) ( P 
Btwn  <. A ,  c
>.  /\  P  =/=  c
)  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4431, 43mpd 14 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) )
4544expr 598 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( B  Btwn  <. P ,  A >.  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4627, 45jaod 369 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
47 simprr1 1003 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  c  =/=  P
)
48 simpll 730 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  N  e.  NN )
49 simplr1 997 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
50 simplr2 998 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
51 simpr 447 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
52 simprr2 1004 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. A , 
c >. )
5348, 49, 50, 51, 52btwncomand 24638 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. c ,  A >. )
54 simplr3 999 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
55 simprr3 1005 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. B , 
c >. )
5648, 49, 54, 51, 55btwncomand 24638 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. c ,  B >. )
57 btwnconn2 24725 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( c  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <.
c ,  A >.  /\  P  Btwn  <. c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
5848, 51, 49, 50, 54, 57syl122anc 1191 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  (
( c  =/=  P  /\  P  Btwn  <. c ,  A >.  /\  P  Btwn  <.
c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
5958adantr 451 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  ( ( c  =/=  P  /\  P  Btwn  <. c ,  A >.  /\  P  Btwn  <. c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6047, 53, 56, 59mp3and 1280 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
6160expr 598 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6261an32s 779 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  /\  c  e.  ( EE `  N ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6362rexlimdva 2667 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6446, 63impbid 183 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  <->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
6564pm5.32da 622 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) ) )
66 df-3an 936 . . 3  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
67 df-3an 936 . . 3  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
6865, 66, 673bitr4g 279 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( A  =/=  P  /\  B  =/= 
P  /\  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) ) )
691, 68bitrd 244 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    e. wcel 1684    =/= wne 2446   E.wrex 2544   <.cop 3643   class class class wbr 4023   ` cfv 5255   NNcn 9746   EEcee 24516    Btwn cbtwn 24517  OutsideOfcoutsideof 24742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ee 24519  df-btwn 24520  df-cgr 24521  df-ofs 24606  df-ifs 24662  df-cgr3 24663  df-colinear 24664  df-fs 24665  df-outsideof 24743
  Copyright terms: Public domain W3C validator