Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Unicode version

Theorem brpprod3b 25734
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1  |-  X  e. 
_V
brpprod3.2  |-  Y  e. 
_V
brpprod3.3  |-  Z  e. 
_V
Assertion
Ref Expression
brpprod3b  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <->  E. z E. w ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
Distinct variable groups:    w, R, z    w, S, z    w, X, z    w, Y, z   
w, Z, z

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 25730 . . 3  |- pprod ( R ,  S )  =  `'pprod ( `' R ,  `' S )
21breqi 4220 . 2  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <-> 
X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. )
3 brpprod3.1 . . . . 5  |-  X  e. 
_V
4 opex 4429 . . . . 5  |-  <. Y ,  Z >.  e.  _V
53, 4brcnv 5057 . . . 4  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<-> 
<. Y ,  Z >.pprod ( `' R ,  `' S
) X )
6 brpprod3.2 . . . . 5  |-  Y  e. 
_V
7 brpprod3.3 . . . . 5  |-  Z  e. 
_V
86, 7, 3brpprod3a 25733 . . . 4  |-  ( <. Y ,  Z >.pprod ( `' R ,  `' S
) X  <->  E. z E. w ( X  = 
<. z ,  w >.  /\  Y `' R z  /\  Z `' S w ) )
95, 8bitri 242 . . 3  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<->  E. z E. w
( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w ) )
10 biid 229 . . . . 5  |-  ( X  =  <. z ,  w >.  <-> 
X  =  <. z ,  w >. )
11 vex 2961 . . . . . 6  |-  z  e. 
_V
126, 11brcnv 5057 . . . . 5  |-  ( Y `' R z  <->  z R Y )
13 vex 2961 . . . . . 6  |-  w  e. 
_V
147, 13brcnv 5057 . . . . 5  |-  ( Z `' S w  <->  w S Z )
1510, 12, 143anbi123i 1143 . . . 4  |-  ( ( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w )  <->  ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
16152exbii 1594 . . 3  |-  ( E. z E. w ( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w )  <->  E. z E. w ( X  = 
<. z ,  w >.  /\  z R Y  /\  w S Z ) )
179, 16bitri 242 . 2  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<->  E. z E. w
( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
182, 17bitri 242 1  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <->  E. z E. w ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   _Vcvv 2958   <.cop 3819   class class class wbr 4214   `'ccnv 4879  pprodcpprod 25677
This theorem is referenced by:  brcart  25779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fo 5462  df-fv 5464  df-1st 6351  df-2nd 6352  df-txp 25700  df-pprod 25701
  Copyright terms: Public domain W3C validator