Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Unicode version

Theorem brpprod3b 25451
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1  |-  X  e. 
_V
brpprod3.2  |-  Y  e. 
_V
brpprod3.3  |-  Z  e. 
_V
Assertion
Ref Expression
brpprod3b  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <->  E. z E. w ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
Distinct variable groups:    w, R, z    w, S, z    w, X, z    w, Y, z   
w, Z, z

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 25447 . . 3  |- pprod ( R ,  S )  =  `'pprod ( `' R ,  `' S )
21breqi 4159 . 2  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <-> 
X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. )
3 brpprod3.1 . . . . 5  |-  X  e. 
_V
4 opex 4368 . . . . 5  |-  <. Y ,  Z >.  e.  _V
53, 4brcnv 4995 . . . 4  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<-> 
<. Y ,  Z >.pprod ( `' R ,  `' S
) X )
6 brpprod3.2 . . . . 5  |-  Y  e. 
_V
7 brpprod3.3 . . . . 5  |-  Z  e. 
_V
86, 7, 3brpprod3a 25450 . . . 4  |-  ( <. Y ,  Z >.pprod ( `' R ,  `' S
) X  <->  E. z E. w ( X  = 
<. z ,  w >.  /\  Y `' R z  /\  Z `' S w ) )
95, 8bitri 241 . . 3  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<->  E. z E. w
( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w ) )
10 biid 228 . . . . 5  |-  ( X  =  <. z ,  w >.  <-> 
X  =  <. z ,  w >. )
11 vex 2902 . . . . . 6  |-  z  e. 
_V
126, 11brcnv 4995 . . . . 5  |-  ( Y `' R z  <->  z R Y )
13 vex 2902 . . . . . 6  |-  w  e. 
_V
147, 13brcnv 4995 . . . . 5  |-  ( Z `' S w  <->  w S Z )
1510, 12, 143anbi123i 1142 . . . 4  |-  ( ( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w )  <->  ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
16152exbii 1590 . . 3  |-  ( E. z E. w ( X  =  <. z ,  w >.  /\  Y `' R z  /\  Z `' S w )  <->  E. z E. w ( X  = 
<. z ,  w >.  /\  z R Y  /\  w S Z ) )
179, 16bitri 241 . 2  |-  ( X `'pprod ( `' R ,  `' S ) <. Y ,  Z >. 
<->  E. z E. w
( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
182, 17bitri 241 1  |-  ( Xpprod ( R ,  S
) <. Y ,  Z >.  <->  E. z E. w ( X  =  <. z ,  w >.  /\  z R Y  /\  w S Z ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   _Vcvv 2899   <.cop 3760   class class class wbr 4153   `'ccnv 4817  pprodcpprod 25398
This theorem is referenced by:  brcart  25495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fo 5400  df-fv 5402  df-1st 6288  df-2nd 6289  df-txp 25419  df-pprod 25420
  Copyright terms: Public domain W3C validator