Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex2 Unicode version

Theorem brrelex2 4744
 Description: A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex2

Proof of Theorem brrelex2
StepHypRef Expression
1 brrelex12 4742 . 2
21simprd 449 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wcel 1696  cvv 2801   class class class wbr 4039   wrel 4710 This theorem is referenced by:  brrelex2i  4746  releldm  4927  relelrn  4928  elrelimasn  5053  funbrfv  5577  relbrtpos  6261  ertr  6691  erth  6720  pslem  14331  preotr2  25338  nfwpr4c  25388 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712
 Copyright terms: Public domain W3C validator