MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex2 Unicode version

Theorem brrelex2 4858
Description: A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )

Proof of Theorem brrelex2
StepHypRef Expression
1 brrelex12 4856 . 2  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
21simprd 450 1  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717   _Vcvv 2900   class class class wbr 4154   Rel wrel 4824
This theorem is referenced by:  brrelex2i  4860  releldm  5043  relelrn  5044  elrelimasn  5169  funbrfv  5705  relbrtpos  6427  ertr  6857  erth  6886  pslem  14566
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-br 4155  df-opab 4209  df-xp 4825  df-rel 4826
  Copyright terms: Public domain W3C validator