Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsset Unicode version

Theorem brsset 24987
Description: For sets, the  SSet binary relationship is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
brsset.1  |-  B  e. 
_V
Assertion
Ref Expression
brsset  |-  ( A
SSet B  <->  A  C_  B )

Proof of Theorem brsset
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsset 24986 . . 3  |-  Rel  SSet
21brrelexi 4811 . 2  |-  ( A
SSet B  ->  A  e. 
_V )
3 brsset.1 . . 3  |-  B  e. 
_V
43ssex 4239 . 2  |-  ( A 
C_  B  ->  A  e.  _V )
5 breq1 4107 . . 3  |-  ( x  =  A  ->  (
x SSet B  <->  A SSet B ) )
6 sseq1 3275 . . 3  |-  ( x  =  A  ->  (
x  C_  B  <->  A  C_  B
) )
7 opex 4319 . . . . . . 7  |-  <. x ,  B >.  e.  _V
87elrn 5001 . . . . . 6  |-  ( <.
x ,  B >.  e. 
ran  (  _E  (x)  ( _V  \  _E  )
)  <->  E. y  y (  _E  (x)  ( _V  \  _E  ) ) <.
x ,  B >. )
9 vex 2867 . . . . . . . . 9  |-  y  e. 
_V
10 vex 2867 . . . . . . . . 9  |-  x  e. 
_V
119, 10, 3brtxp 24978 . . . . . . . 8  |-  ( y (  _E  (x)  ( _V  \  _E  ) )
<. x ,  B >.  <->  (
y  _E  x  /\  y ( _V  \  _E  ) B ) )
12 epel 4390 . . . . . . . . 9  |-  ( y  _E  x  <->  y  e.  x )
13 brv 24975 . . . . . . . . . . 11  |-  y _V B
14 brdif 4152 . . . . . . . . . . 11  |-  ( y ( _V  \  _E  ) B  <->  ( y _V B  /\  -.  y  _E  B ) )
1513, 14mpbiran 884 . . . . . . . . . 10  |-  ( y ( _V  \  _E  ) B  <->  -.  y  _E  B )
163epelc 4389 . . . . . . . . . 10  |-  ( y  _E  B  <->  y  e.  B )
1715, 16xchbinx 301 . . . . . . . . 9  |-  ( y ( _V  \  _E  ) B  <->  -.  y  e.  B )
1812, 17anbi12i 678 . . . . . . . 8  |-  ( ( y  _E  x  /\  y ( _V  \  _E  ) B )  <->  ( y  e.  x  /\  -.  y  e.  B ) )
1911, 18bitri 240 . . . . . . 7  |-  ( y (  _E  (x)  ( _V  \  _E  ) )
<. x ,  B >.  <->  (
y  e.  x  /\  -.  y  e.  B
) )
2019exbii 1582 . . . . . 6  |-  ( E. y  y (  _E 
(x)  ( _V  \  _E  ) ) <. x ,  B >.  <->  E. y ( y  e.  x  /\  -.  y  e.  B )
)
21 exanali 1585 . . . . . 6  |-  ( E. y ( y  e.  x  /\  -.  y  e.  B )  <->  -.  A. y
( y  e.  x  ->  y  e.  B ) )
228, 20, 213bitrri 263 . . . . 5  |-  ( -. 
A. y ( y  e.  x  ->  y  e.  B )  <->  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
2322con1bii 321 . . . 4  |-  ( -. 
<. x ,  B >.  e. 
ran  (  _E  (x)  ( _V  \  _E  )
)  <->  A. y ( y  e.  x  ->  y  e.  B ) )
24 df-br 4105 . . . . 5  |-  ( x
SSet B  <->  <. x ,  B >.  e.  SSet )
25 df-sset 24955 . . . . . . 7  |-  SSet  =  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )
2625eleq2i 2422 . . . . . 6  |-  ( <.
x ,  B >.  e. 
SSet 
<-> 
<. x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) ) )
2710, 3opelvv 4817 . . . . . . 7  |-  <. x ,  B >.  e.  ( _V  X.  _V )
28 eldif 3238 . . . . . . 7  |-  ( <.
x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )  <->  ( <. x ,  B >.  e.  ( _V  X.  _V )  /\  -.  <. x ,  B >.  e.  ran  (  _E 
(x)  ( _V  \  _E  ) ) ) )
2927, 28mpbiran 884 . . . . . 6  |-  ( <.
x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )  <->  -.  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
3026, 29bitri 240 . . . . 5  |-  ( <.
x ,  B >.  e. 
SSet 
<->  -.  <. x ,  B >.  e.  ran  (  _E 
(x)  ( _V  \  _E  ) ) )
3124, 30bitri 240 . . . 4  |-  ( x
SSet B  <->  -.  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
32 dfss2 3245 . . . 4  |-  ( x 
C_  B  <->  A. y
( y  e.  x  ->  y  e.  B ) )
3323, 31, 323bitr4i 268 . . 3  |-  ( x
SSet B  <->  x  C_  B )
345, 6, 33vtoclbg 2920 . 2  |-  ( A  e.  _V  ->  ( A SSet B  <->  A  C_  B
) )
352, 4, 34pm5.21nii 342 1  |-  ( A
SSet B  <->  A  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1540   E.wex 1541    e. wcel 1710   _Vcvv 2864    \ cdif 3225    C_ wss 3228   <.cop 3719   class class class wbr 4104    _E cep 4385    X. cxp 4769   ran crn 4772    (x) ctxp 24931   SSetcsset 24933
This theorem is referenced by:  idsset  24988  dfon3  24990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-eprel 4387  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-fo 5343  df-fv 5345  df-1st 6209  df-2nd 6210  df-txp 24953  df-sset 24955
  Copyright terms: Public domain W3C validator