Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtp Structured version   Unicode version

Theorem brtp 25403
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1  |-  X  e. 
_V
brtp.2  |-  Y  e. 
_V
Assertion
Ref Expression
brtp  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  ( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )

Proof of Theorem brtp
StepHypRef Expression
1 df-br 4238 . 2  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  <. X ,  Y >.  e.  { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } )
2 opex 4456 . . 3  |-  <. X ,  Y >.  e.  _V
32eltp 3877 . 2  |-  ( <. X ,  Y >.  e. 
{ <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. }  <->  ( <. X ,  Y >.  =  <. A ,  B >.  \/  <. X ,  Y >.  =  <. C ,  D >.  \/  <. X ,  Y >.  =  <. E ,  F >. ) )
4 brtp.1 . . . 4  |-  X  e. 
_V
5 brtp.2 . . . 4  |-  Y  e. 
_V
64, 5opth 4464 . . 3  |-  ( <. X ,  Y >.  = 
<. A ,  B >.  <->  ( X  =  A  /\  Y  =  B )
)
74, 5opth 4464 . . 3  |-  ( <. X ,  Y >.  = 
<. C ,  D >.  <->  ( X  =  C  /\  Y  =  D )
)
84, 5opth 4464 . . 3  |-  ( <. X ,  Y >.  = 
<. E ,  F >.  <->  ( X  =  E  /\  Y  =  F )
)
96, 7, 83orbi123i 1144 . 2  |-  ( (
<. X ,  Y >.  = 
<. A ,  B >.  \/ 
<. X ,  Y >.  = 
<. C ,  D >.  \/ 
<. X ,  Y >.  = 
<. E ,  F >. )  <-> 
( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )
101, 3, 93bitri 264 1  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  ( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    \/ w3o 936    = wceq 1653    e. wcel 1727   _Vcvv 2962   {ctp 3840   <.cop 3841   class class class wbr 4237
This theorem is referenced by:  sltval2  25642  sltsgn1  25647  sltsgn2  25648  sltintdifex  25649  sltres  25650  sltsolem1  25654  nodenselem8  25674  nodense  25675  nobndup  25686  nobnddown  25687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-rab 2720  df-v 2964  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-br 4238
  Copyright terms: Public domain W3C validator