MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos2 Unicode version

Theorem brtpos2 6256
Description: Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )

Proof of Theorem brtpos2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 6255 . . . 4  |-  Rel tpos  F
21brrelexi 4745 . . 3  |-  ( Atpos 
F B  ->  A  e.  _V )
32a1i 10 . 2  |-  ( B  e.  V  ->  ( Atpos  F B  ->  A  e.  _V ) )
4 elex 2809 . . . 4  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  A  e.  _V )
54adantr 451 . . 3  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V )
65a1i 10 . 2  |-  ( B  e.  V  ->  (
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B )  ->  A  e.  _V ) )
7 df-tpos 6250 . . . . . 6  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
87breqi 4045 . . . . 5  |-  ( Atpos 
F B  <->  A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B )
9 brcog 4866 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) B  <->  E. y
( A ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) y  /\  y F B ) ) )
108, 9syl5bb 248 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <->  E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B ) ) )
11 funmpt 5306 . . . . . . . . . . 11  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
12 funbrfv2b 5583 . . . . . . . . . . 11  |-  ( Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  ->  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) ) )
1311, 12ax-mp 8 . . . . . . . . . 10  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e. 
dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y ) )
14 snex 4232 . . . . . . . . . . . . . . . 16  |-  { x }  e.  _V
1514cnvex 5225 . . . . . . . . . . . . . . 15  |-  `' {
x }  e.  _V
1615uniex 4532 . . . . . . . . . . . . . 14  |-  U. `' { x }  e.  _V
17 eqid 2296 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  =  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
1816, 17dmmpti 5389 . . . . . . . . . . . . 13  |-  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  =  ( `' dom  F  u.  { (/) } )
1918eleq2i 2360 . . . . . . . . . . . 12  |-  ( A  e.  dom  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  <->  A  e.  ( `' dom  F  u.  { (/)
} ) )
20 eqcom 2298 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A )  =  y  <->  y  =  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) `
 A ) )
2119, 20anbi12i 678 . . . . . . . . . . 11  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) ) )
22 sneq 3664 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  { x }  =  { A } )
2322cnveqd 4873 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  `' { x }  =  `' { A } )
2423unieqd 3854 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  U. `' { x }  =  U. `' { A } )
25 snex 4232 . . . . . . . . . . . . . . . 16  |-  { A }  e.  _V
2625cnvex 5225 . . . . . . . . . . . . . . 15  |-  `' { A }  e.  _V
2726uniex 4532 . . . . . . . . . . . . . 14  |-  U. `' { A }  e.  _V
2824, 17, 27fvmpt 5618 . . . . . . . . . . . . 13  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  U. `' { A } )
2928eqeq2d 2307 . . . . . . . . . . . 12  |-  ( A  e.  ( `' dom  F  u.  { (/) } )  ->  ( y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) `
 A )  <->  y  =  U. `' { A } ) )
3029pm5.32i 618 . . . . . . . . . . 11  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
) )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
3121, 30bitri 240 . . . . . . . . . 10  |-  ( ( A  e.  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  /\  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) `  A
)  =  y )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } ) )
3213, 31bitri 240 . . . . . . . . 9  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y  =  U. `' { A } ) )
33 ancom 437 . . . . . . . . 9  |-  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y  =  U. `' { A } )  <->  ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
3432, 33bitri 240 . . . . . . . 8  |-  ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  <->  ( y  = 
U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/)
} ) ) )
3534anbi1i 676 . . . . . . 7  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( (
y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B ) )
36 anass 630 . . . . . . 7  |-  ( ( ( y  =  U. `' { A }  /\  A  e.  ( `' dom  F  u.  { (/) } ) )  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
3735, 36bitri 240 . . . . . 6  |-  ( ( A ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) y  /\  y F B )  <->  ( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) ) )
3837exbii 1572 . . . . 5  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  E. y
( y  =  U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B ) ) )
39 breq1 4042 . . . . . . 7  |-  ( y  =  U. `' { A }  ->  ( y F B  <->  U. `' { A } F B ) )
4039anbi2d 684 . . . . . 6  |-  ( y  =  U. `' { A }  ->  ( ( A  e.  ( `' dom  F  u.  { (/)
} )  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
4127, 40ceqsexv 2836 . . . . 5  |-  ( E. y ( y  = 
U. `' { A }  /\  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  y F B ) )  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) )
4238, 41bitri 240 . . . 4  |-  ( E. y ( A ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) y  /\  y F B )  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) )
4310, 42syl6bb 252 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( Atpos  F B  <-> 
( A  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { A } F B ) ) )
4443expcom 424 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) ) )
453, 6, 44pm5.21ndd 343 1  |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163   (/)c0 3468   {csn 3653   U.cuni 3843   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   dom cdm 4705    o. ccom 4709   Fun wfun 5265   ` cfv 5271  tpos ctpos 6249
This theorem is referenced by:  brtpos0  6257  reldmtpos  6258  brtpos  6259  dftpos4  6269  tpostpos  6270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-tpos 6250
  Copyright terms: Public domain W3C validator