Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp Structured version   Unicode version

Theorem brtxp 25725
 Description: Characterize a trinary relationship over a tail cross product. Together with txpss3v 25723, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypotheses
Ref Expression
brtxp.1
brtxp.2
brtxp.3
Assertion
Ref Expression
brtxp

Proof of Theorem brtxp
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 25698 . . 3
21breqi 4218 . 2
3 brin 4259 . 2
4 brtxp.1 . . . . 5
5 opex 4427 . . . . 5
64, 5brco 5043 . . . 4
7 ancom 438 . . . . . 6
8 vex 2959 . . . . . . . . 9
98, 5brcnv 5055 . . . . . . . 8
10 brtxp.2 . . . . . . . . . 10
11 brtxp.3 . . . . . . . . . 10
1210, 11opelvv 4924 . . . . . . . . 9
138brres 5152 . . . . . . . . 9
1412, 13mpbiran2 886 . . . . . . . 8
1510, 11, 8br1steq 25398 . . . . . . . 8
169, 14, 153bitri 263 . . . . . . 7
1716anbi1i 677 . . . . . 6
187, 17bitri 241 . . . . 5
1918exbii 1592 . . . 4
20 breq2 4216 . . . . 5
2110, 20ceqsexv 2991 . . . 4
226, 19, 213bitri 263 . . 3
234, 5brco 5043 . . . 4
24 ancom 438 . . . . . 6
25 vex 2959 . . . . . . . . 9
2625, 5brcnv 5055 . . . . . . . 8
2725brres 5152 . . . . . . . . 9
2812, 27mpbiran2 886 . . . . . . . 8
2910, 11, 25br2ndeq 25399 . . . . . . . 8
3026, 28, 293bitri 263 . . . . . . 7
3130anbi1i 677 . . . . . 6
3224, 31bitri 241 . . . . 5
3332exbii 1592 . . . 4
34 breq2 4216 . . . . 5
3511, 34ceqsexv 2991 . . . 4
3623, 33, 353bitri 263 . . 3
3722, 36anbi12i 679 . 2
382, 3, 373bitri 263 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359  wex 1550   wceq 1652   wcel 1725  cvv 2956   cin 3319  cop 3817   class class class wbr 4212   cxp 4876  ccnv 4877   cres 4880   ccom 4882  c1st 6347  c2nd 6348   ctxp 25674 This theorem is referenced by:  brtxp2  25726  pprodss4v  25729  brpprod  25730  brsset  25734  brtxpsd  25739  elfuns  25760 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fo 5460  df-fv 5462  df-1st 6349  df-2nd 6350  df-txp 25698
 Copyright terms: Public domain W3C validator