Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom Structured version   Unicode version

Theorem brwdom 7537
 Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
brwdom *
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem brwdom
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2966 . 2
2 relwdom 7536 . . . . 5 *
32brrelexi 4920 . . . 4 *
43a1i 11 . . 3 *
5 0ex 4341 . . . . . 6
6 eleq1a 2507 . . . . . 6
75, 6ax-mp 8 . . . . 5
8 forn 5658 . . . . . . 7
9 vex 2961 . . . . . . . 8
109rnex 5135 . . . . . . 7
118, 10syl6eqelr 2527 . . . . . 6
1211exlimiv 1645 . . . . 5
137, 12jaoi 370 . . . 4
1413a1i 11 . . 3
15 eqeq1 2444 . . . . . 6
16 foeq3 5653 . . . . . . 7
1716exbidv 1637 . . . . . 6
1815, 17orbi12d 692 . . . . 5
19 foeq2 5652 . . . . . . 7
2019exbidv 1637 . . . . . 6
2120orbi2d 684 . . . . 5
22 df-wdom 7529 . . . . 5 *
2318, 21, 22brabg 4476 . . . 4 *
2423expcom 426 . . 3 *
254, 14, 24pm5.21ndd 345 . 2 *
261, 25syl 16 1 *
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wo 359  wex 1551   wceq 1653   wcel 1726  cvv 2958  c0 3630   class class class wbr 4214   crn 4881  wfo 5454   * cwdom 7527 This theorem is referenced by:  brwdomi  7538  brwdomn0  7539  0wdom  7540  fowdom  7541  domwdom  7544  wdomnumr  7947 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-xp 4886  df-rel 4887  df-cnv 4888  df-dm 4890  df-rn 4891  df-fn 5459  df-fo 5462  df-wdom 7529
 Copyright terms: Public domain W3C validator