MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom2 Unicode version

Theorem brwdom2 7303
Description: Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
brwdom2  |-  ( Y  e.  V  ->  ( X  ~<_*  Y  <->  E. y  e.  ~P  Y E. z  z : y -onto-> X ) )
Distinct variable groups:    y, X, z    y, Y, z
Allowed substitution hints:    V( y, z)

Proof of Theorem brwdom2
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2809 . 2  |-  ( Y  e.  V  ->  Y  e.  _V )
2 0wdom 7300 . . . . . 6  |-  ( Y  e.  _V  ->  (/)  ~<_*  Y )
3 breq1 4042 . . . . . 6  |-  ( X  =  (/)  ->  ( X  ~<_*  Y 
<->  (/) 
~<_* 
Y ) )
42, 3syl5ibrcom 213 . . . . 5  |-  ( Y  e.  _V  ->  ( X  =  (/)  ->  X  ~<_*  Y ) )
54imp 418 . . . 4  |-  ( ( Y  e.  _V  /\  X  =  (/) )  ->  X  ~<_*  Y )
6 0elpw 4196 . . . . . . 7  |-  (/)  e.  ~P Y
7 f1o0 5526 . . . . . . . 8  |-  (/) : (/) -1-1-onto-> (/)
8 f1ofo 5495 . . . . . . . 8  |-  ( (/) :
(/)
-1-1-onto-> (/) 
->  (/) : (/) -onto-> (/) )
9 0ex 4166 . . . . . . . . 9  |-  (/)  e.  _V
10 foeq1 5463 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( z : (/) -onto-> (/)  <->  (/) : (/) -onto-> (/) ) )
119, 10spcev 2888 . . . . . . . 8  |-  ( (/) :
(/) -onto-> (/)  ->  E. z 
z : (/) -onto-> (/) )
127, 8, 11mp2b 9 . . . . . . 7  |-  E. z 
z : (/) -onto-> (/)
13 foeq2 5464 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( z : y -onto-> (/)  <->  z : (/)
-onto-> (/) ) )
1413exbidv 1616 . . . . . . . 8  |-  ( y  =  (/)  ->  ( E. z  z : y
-onto-> (/) 
<->  E. z  z :
(/) -onto-> (/) ) )
1514rspcev 2897 . . . . . . 7  |-  ( (
(/)  e.  ~P Y  /\  E. z  z :
(/) -onto-> (/) )  ->  E. y  e.  ~P  Y E. z 
z : y -onto-> (/) )
166, 12, 15mp2an 653 . . . . . 6  |-  E. y  e.  ~P  Y E. z 
z : y -onto-> (/)
17 foeq3 5465 . . . . . . . 8  |-  ( X  =  (/)  ->  ( z : y -onto-> X  <->  z :
y -onto-> (/) ) )
1817exbidv 1616 . . . . . . 7  |-  ( X  =  (/)  ->  ( E. z  z : y
-onto-> X  <->  E. z  z : y -onto-> (/) ) )
1918rexbidv 2577 . . . . . 6  |-  ( X  =  (/)  ->  ( E. y  e.  ~P  Y E. z  z :
y -onto-> X  <->  E. y  e.  ~P  Y E. z  z : y -onto-> (/) ) )
2016, 19mpbiri 224 . . . . 5  |-  ( X  =  (/)  ->  E. y  e.  ~P  Y E. z 
z : y -onto-> X )
2120adantl 452 . . . 4  |-  ( ( Y  e.  _V  /\  X  =  (/) )  ->  E. y  e.  ~P  Y E. z  z : y -onto-> X )
225, 212thd 231 . . 3  |-  ( ( Y  e.  _V  /\  X  =  (/) )  -> 
( X  ~<_*  Y  <->  E. y  e.  ~P  Y E. z  z : y -onto-> X ) )
23 brwdomn0 7299 . . . . 5  |-  ( X  =/=  (/)  ->  ( X  ~<_*  Y  <->  E. x  x : Y -onto-> X ) )
2423adantl 452 . . . 4  |-  ( ( Y  e.  _V  /\  X  =/=  (/) )  ->  ( X  ~<_*  Y  <->  E. x  x : Y -onto-> X ) )
25 foeq1 5463 . . . . . . 7  |-  ( x  =  z  ->  (
x : Y -onto-> X  <->  z : Y -onto-> X ) )
2625cbvexv 1956 . . . . . 6  |-  ( E. x  x : Y -onto-> X 
<->  E. z  z : Y -onto-> X )
27 pwidg 3650 . . . . . . . . 9  |-  ( Y  e.  _V  ->  Y  e.  ~P Y )
2827ad2antrr 706 . . . . . . . 8  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  E. z  z : Y -onto-> X )  ->  Y  e.  ~P Y )
29 foeq2 5464 . . . . . . . . . 10  |-  ( y  =  Y  ->  (
z : y -onto-> X  <-> 
z : Y -onto-> X
) )
3029exbidv 1616 . . . . . . . . 9  |-  ( y  =  Y  ->  ( E. z  z :
y -onto-> X  <->  E. z  z : Y -onto-> X ) )
3130rspcev 2897 . . . . . . . 8  |-  ( ( Y  e.  ~P Y  /\  E. z  z : Y -onto-> X )  ->  E. y  e.  ~P  Y E. z 
z : y -onto-> X )
3228, 31sylancom 648 . . . . . . 7  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  E. z  z : Y -onto-> X )  ->  E. y  e.  ~P  Y E. z 
z : y -onto-> X )
3332ex 423 . . . . . 6  |-  ( ( Y  e.  _V  /\  X  =/=  (/) )  ->  ( E. z  z : Y -onto-> X  ->  E. y  e.  ~P  Y E. z 
z : y -onto-> X ) )
3426, 33syl5bi 208 . . . . 5  |-  ( ( Y  e.  _V  /\  X  =/=  (/) )  ->  ( E. x  x : Y -onto-> X  ->  E. y  e.  ~P  Y E. z 
z : y -onto-> X ) )
35 n0 3477 . . . . . . . . . . 11  |-  ( X  =/=  (/)  <->  E. w  w  e.  X )
3635biimpi 186 . . . . . . . . . 10  |-  ( X  =/=  (/)  ->  E. w  w  e.  X )
3736ad2antlr 707 . . . . . . . . 9  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y
-onto-> X ) )  ->  E. w  w  e.  X )
38 vex 2804 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
39 difexg 4178 . . . . . . . . . . . . . . . 16  |-  ( Y  e.  _V  ->  ( Y  \  y )  e. 
_V )
40 snex 4232 . . . . . . . . . . . . . . . 16  |-  { w }  e.  _V
41 xpexg 4816 . . . . . . . . . . . . . . . 16  |-  ( ( ( Y  \  y
)  e.  _V  /\  { w }  e.  _V )  ->  ( ( Y 
\  y )  X. 
{ w } )  e.  _V )
4239, 40, 41sylancl 643 . . . . . . . . . . . . . . 15  |-  ( Y  e.  _V  ->  (
( Y  \  y
)  X.  { w } )  e.  _V )
43 unexg 4537 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  _V  /\  ( ( Y  \ 
y )  X.  {
w } )  e. 
_V )  ->  (
z  u.  ( ( Y  \  y )  X.  { w }
) )  e.  _V )
4438, 42, 43sylancr 644 . . . . . . . . . . . . . 14  |-  ( Y  e.  _V  ->  (
z  u.  ( ( Y  \  y )  X.  { w }
) )  e.  _V )
4544adantr 451 . . . . . . . . . . . . 13  |-  ( ( Y  e.  _V  /\  X  =/=  (/) )  ->  (
z  u.  ( ( Y  \  y )  X.  { w }
) )  e.  _V )
4645ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
z  u.  ( ( Y  \  y )  X.  { w }
) )  e.  _V )
47 fofn 5469 . . . . . . . . . . . . . . . . 17  |-  ( z : y -onto-> X  -> 
z  Fn  y )
4847adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~P Y  /\  z : y -onto-> X )  ->  z  Fn  y )
4948ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  z  Fn  y )
50 vex 2804 . . . . . . . . . . . . . . . 16  |-  w  e. 
_V
51 fnconstg 5445 . . . . . . . . . . . . . . . 16  |-  ( w  e.  _V  ->  (
( Y  \  y
)  X.  { w } )  Fn  ( Y  \  y ) )
5250, 51mp1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
( Y  \  y
)  X.  { w } )  Fn  ( Y  \  y ) )
53 disjdif 3539 . . . . . . . . . . . . . . . 16  |-  ( y  i^i  ( Y  \ 
y ) )  =  (/)
5453a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
y  i^i  ( Y  \  y ) )  =  (/) )
55 fnun 5366 . . . . . . . . . . . . . . 15  |-  ( ( ( z  Fn  y  /\  ( ( Y  \ 
y )  X.  {
w } )  Fn  ( Y  \  y
) )  /\  (
y  i^i  ( Y  \  y ) )  =  (/) )  ->  ( z  u.  ( ( Y 
\  y )  X. 
{ w } ) )  Fn  ( y  u.  ( Y  \ 
y ) ) )
5649, 52, 54, 55syl21anc 1181 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
z  u.  ( ( Y  \  y )  X.  { w }
) )  Fn  (
y  u.  ( Y 
\  y ) ) )
57 elpwi 3646 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ~P Y  -> 
y  C_  Y )
58 undif 3547 . . . . . . . . . . . . . . . . . 18  |-  ( y 
C_  Y  <->  ( y  u.  ( Y  \  y
) )  =  Y )
5957, 58sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ~P Y  -> 
( y  u.  ( Y  \  y ) )  =  Y )
6059ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y
-onto-> X ) )  -> 
( y  u.  ( Y  \  y ) )  =  Y )
6160adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
y  u.  ( Y 
\  y ) )  =  Y )
6261fneq2d 5352 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
( z  u.  (
( Y  \  y
)  X.  { w } ) )  Fn  ( y  u.  ( Y  \  y ) )  <-> 
( z  u.  (
( Y  \  y
)  X.  { w } ) )  Fn  Y ) )
6356, 62mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
z  u.  ( ( Y  \  y )  X.  { w }
) )  Fn  Y
)
64 rnun 5105 . . . . . . . . . . . . . 14  |-  ran  (
z  u.  ( ( Y  \  y )  X.  { w }
) )  =  ( ran  z  u.  ran  ( ( Y  \ 
y )  X.  {
w } ) )
65 forn 5470 . . . . . . . . . . . . . . . . . 18  |-  ( z : y -onto-> X  ->  ran  z  =  X
)
6665ad2antll 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y
-onto-> X ) )  ->  ran  z  =  X
)
6766adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  ran  z  =  X )
6867uneq1d 3341 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  ( ran  z  u.  ran  ( ( Y  \ 
y )  X.  {
w } ) )  =  ( X  u.  ran  ( ( Y  \ 
y )  X.  {
w } ) ) )
69 fconst6g 5446 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  X  ->  (
( Y  \  y
)  X.  { w } ) : ( Y  \  y ) --> X )
70 frn 5411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Y  \  y
)  X.  { w } ) : ( Y  \  y ) --> X  ->  ran  ( ( Y  \  y )  X.  { w }
)  C_  X )
7169, 70syl 15 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  X  ->  ran  ( ( Y  \ 
y )  X.  {
w } )  C_  X )
7271adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  ran  ( ( Y  \ 
y )  X.  {
w } )  C_  X )
73 ssequn2 3361 . . . . . . . . . . . . . . . 16  |-  ( ran  ( ( Y  \ 
y )  X.  {
w } )  C_  X 
<->  ( X  u.  ran  ( ( Y  \ 
y )  X.  {
w } ) )  =  X )
7472, 73sylib 188 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  ( X  u.  ran  ( ( Y  \  y )  X.  { w }
) )  =  X )
7568, 74eqtrd 2328 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  ( ran  z  u.  ran  ( ( Y  \ 
y )  X.  {
w } ) )  =  X )
7664, 75syl5eq 2340 . . . . . . . . . . . . 13  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  ran  ( z  u.  (
( Y  \  y
)  X.  { w } ) )  =  X )
77 df-fo 5277 . . . . . . . . . . . . 13  |-  ( ( z  u.  ( ( Y  \  y )  X.  { w }
) ) : Y -onto-> X 
<->  ( ( z  u.  ( ( Y  \ 
y )  X.  {
w } ) )  Fn  Y  /\  ran  ( z  u.  (
( Y  \  y
)  X.  { w } ) )  =  X ) )
7863, 76, 77sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  (
z  u.  ( ( Y  \  y )  X.  { w }
) ) : Y -onto-> X )
79 foeq1 5463 . . . . . . . . . . . . 13  |-  ( x  =  ( z  u.  ( ( Y  \ 
y )  X.  {
w } ) )  ->  ( x : Y -onto-> X  <->  ( z  u.  ( ( Y  \ 
y )  X.  {
w } ) ) : Y -onto-> X ) )
8079spcegv 2882 . . . . . . . . . . . 12  |-  ( ( z  u.  ( ( Y  \  y )  X.  { w }
) )  e.  _V  ->  ( ( z  u.  ( ( Y  \ 
y )  X.  {
w } ) ) : Y -onto-> X  ->  E. x  x : Y -onto-> X ) )
8146, 78, 80sylc 56 . . . . . . . . . . 11  |-  ( ( ( ( Y  e. 
_V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y -onto-> X ) )  /\  w  e.  X )  ->  E. x  x : Y -onto-> X )
8281ex 423 . . . . . . . . . 10  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y
-onto-> X ) )  -> 
( w  e.  X  ->  E. x  x : Y -onto-> X ) )
8382exlimdv 1626 . . . . . . . . 9  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y
-onto-> X ) )  -> 
( E. w  w  e.  X  ->  E. x  x : Y -onto-> X ) )
8437, 83mpd 14 . . . . . . . 8  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  ( y  e.  ~P Y  /\  z : y
-onto-> X ) )  ->  E. x  x : Y -onto-> X )
8584expr 598 . . . . . . 7  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  y  e.  ~P Y
)  ->  ( z : y -onto-> X  ->  E. x  x : Y -onto-> X ) )
8685exlimdv 1626 . . . . . 6  |-  ( ( ( Y  e.  _V  /\  X  =/=  (/) )  /\  y  e.  ~P Y
)  ->  ( E. z  z : y
-onto-> X  ->  E. x  x : Y -onto-> X ) )
8786rexlimdva 2680 . . . . 5  |-  ( ( Y  e.  _V  /\  X  =/=  (/) )  ->  ( E. y  e.  ~P  Y E. z  z : y -onto-> X  ->  E. x  x : Y -onto-> X ) )
8834, 87impbid 183 . . . 4  |-  ( ( Y  e.  _V  /\  X  =/=  (/) )  ->  ( E. x  x : Y -onto-> X  <->  E. y  e.  ~P  Y E. z  z : y -onto-> X ) )
8924, 88bitrd 244 . . 3  |-  ( ( Y  e.  _V  /\  X  =/=  (/) )  ->  ( X  ~<_*  Y  <->  E. y  e.  ~P  Y E. z  z : y -onto-> X ) )
9022, 89pm2.61dane 2537 . 2  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  <->  E. y  e.  ~P  Y E. z  z : y -onto-> X ) )
911, 90syl 15 1  |-  ( Y  e.  V  ->  ( X  ~<_*  Y  <->  E. y  e.  ~P  Y E. z  z : y -onto-> X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   class class class wbr 4039    X. cxp 4703   ran crn 4706    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   -1-1-onto->wf1o 5270    ~<_* cwdom 7287
This theorem is referenced by:  brwdom3  7312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-wdom 7289
  Copyright terms: Public domain W3C validator