MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom3 Unicode version

Theorem brwdom3 7341
Description: Condition for weak dominance with a condition reminiscent of wdomd 7340. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
brwdom3  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( X  ~<_*  Y  <->  E. f A. x  e.  X  E. y  e.  Y  x  =  ( f `  y
) ) )
Distinct variable groups:    f, X, x, y    f, Y, x, y
Allowed substitution hints:    V( x, y, f)    W( x, y, f)

Proof of Theorem brwdom3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2830 . 2  |-  ( X  e.  V  ->  X  e.  _V )
2 elex 2830 . 2  |-  ( Y  e.  W  ->  Y  e.  _V )
3 brwdom2 7332 . . . . 5  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  <->  E. z  e.  ~P  Y E. f  f : z -onto-> X ) )
43adantl 452 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  ~<_*  Y  <->  E. z  e.  ~P  Y E. f  f : z -onto-> X ) )
5 dffo3 5713 . . . . . . . 8  |-  ( f : z -onto-> X  <->  ( f : z --> X  /\  A. x  e.  X  E. y  e.  z  x  =  ( f `  y ) ) )
65simprbi 450 . . . . . . 7  |-  ( f : z -onto-> X  ->  A. x  e.  X  E. y  e.  z  x  =  ( f `  y ) )
7 elpwi 3667 . . . . . . . . . 10  |-  ( z  e.  ~P Y  -> 
z  C_  Y )
8 ssrexv 3272 . . . . . . . . . 10  |-  ( z 
C_  Y  ->  ( E. y  e.  z  x  =  ( f `  y )  ->  E. y  e.  Y  x  =  ( f `  y
) ) )
97, 8syl 15 . . . . . . . . 9  |-  ( z  e.  ~P Y  -> 
( E. y  e.  z  x  =  ( f `  y )  ->  E. y  e.  Y  x  =  ( f `  y ) ) )
109adantl 452 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  z  e.  ~P Y )  ->  ( E. y  e.  z  x  =  ( f `  y )  ->  E. y  e.  Y  x  =  ( f `  y
) ) )
1110ralimdv 2656 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  z  e.  ~P Y )  ->  ( A. x  e.  X  E. y  e.  z  x  =  ( f `  y )  ->  A. x  e.  X  E. y  e.  Y  x  =  ( f `  y
) ) )
126, 11syl5 28 . . . . . 6  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  z  e.  ~P Y )  ->  (
f : z -onto-> X  ->  A. x  e.  X  E. y  e.  Y  x  =  ( f `  y ) ) )
1312eximdv 1613 . . . . 5  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  z  e.  ~P Y )  ->  ( E. f  f :
z -onto-> X  ->  E. f A. x  e.  X  E. y  e.  Y  x  =  ( f `  y ) ) )
1413rexlimdva 2701 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( E. z  e. 
~P  Y E. f 
f : z -onto-> X  ->  E. f A. x  e.  X  E. y  e.  Y  x  =  ( f `  y
) ) )
154, 14sylbid 206 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  ~<_*  Y  ->  E. f A. x  e.  X  E. y  e.  Y  x  =  ( f `  y ) ) )
16 simpll 730 . . . . . 6  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  A. x  e.  X  E. y  e.  Y  x  =  ( f `  y ) )  ->  X  e.  _V )
17 simplr 731 . . . . . 6  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  A. x  e.  X  E. y  e.  Y  x  =  ( f `  y ) )  ->  Y  e.  _V )
18 eqeq1 2322 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  =  ( f `
 y )  <->  z  =  ( f `  y
) ) )
1918rexbidv 2598 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( E. y  e.  Y  x  =  ( f `  y )  <->  E. y  e.  Y  z  =  ( f `  y
) ) )
20 fveq2 5563 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
f `  y )  =  ( f `  w ) )
2120eqeq2d 2327 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
z  =  ( f `
 y )  <->  z  =  ( f `  w
) ) )
2221cbvrexv 2799 . . . . . . . . . . 11  |-  ( E. y  e.  Y  z  =  ( f `  y )  <->  E. w  e.  Y  z  =  ( f `  w
) )
2319, 22syl6bb 252 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y  e.  Y  x  =  ( f `  y )  <->  E. w  e.  Y  z  =  ( f `  w
) ) )
2423cbvralv 2798 . . . . . . . . 9  |-  ( A. x  e.  X  E. y  e.  Y  x  =  ( f `  y )  <->  A. z  e.  X  E. w  e.  Y  z  =  ( f `  w
) )
2524biimpi 186 . . . . . . . 8  |-  ( A. x  e.  X  E. y  e.  Y  x  =  ( f `  y )  ->  A. z  e.  X  E. w  e.  Y  z  =  ( f `  w
) )
2625adantl 452 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  A. x  e.  X  E. y  e.  Y  x  =  ( f `  y ) )  ->  A. z  e.  X  E. w  e.  Y  z  =  ( f `  w ) )
2726r19.21bi 2675 . . . . . 6  |-  ( ( ( ( X  e. 
_V  /\  Y  e.  _V )  /\  A. x  e.  X  E. y  e.  Y  x  =  ( f `  y
) )  /\  z  e.  X )  ->  E. w  e.  Y  z  =  ( f `  w
) )
2816, 17, 27wdom2d 7339 . . . . 5  |-  ( ( ( X  e.  _V  /\  Y  e.  _V )  /\  A. x  e.  X  E. y  e.  Y  x  =  ( f `  y ) )  ->  X  ~<_*  Y )
2928ex 423 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( A. x  e.  X  E. y  e.  Y  x  =  ( f `  y )  ->  X  ~<_*  Y ) )
3029exlimdv 1627 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( E. f A. x  e.  X  E. y  e.  Y  x  =  ( f `  y )  ->  X  ~<_*  Y ) )
3115, 30impbid 183 . 2  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  ~<_*  Y  <->  E. f A. x  e.  X  E. y  e.  Y  x  =  ( f `  y
) ) )
321, 2, 31syl2an 463 1  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( X  ~<_*  Y  <->  E. f A. x  e.  X  E. y  e.  Y  x  =  ( f `  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1532    = wceq 1633    e. wcel 1701   A.wral 2577   E.wrex 2578   _Vcvv 2822    C_ wss 3186   ~Pcpw 3659   class class class wbr 4060   -->wf 5288   -onto->wfo 5290   ` cfv 5292    ~<_* cwdom 7316
This theorem is referenced by:  brwdom3i  7342
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-wdom 7318
  Copyright terms: Public domain W3C validator