MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwitnlem Unicode version

Theorem brwitnlem 6522
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
brwitnlem.r  |-  R  =  ( `' O "
( _V  \  1o ) )
brwitnlem.o  |-  O  Fn  X
Assertion
Ref Expression
brwitnlem  |-  ( A R B  <->  ( A O B )  =/=  (/) )

Proof of Theorem brwitnlem
StepHypRef Expression
1 fvex 5555 . . . . 5  |-  ( O `
 <. A ,  B >. )  e.  _V
2 dif1o 6515 . . . . 5  |-  ( ( O `  <. A ,  B >. )  e.  ( _V  \  1o )  <-> 
( ( O `  <. A ,  B >. )  e.  _V  /\  ( O `  <. A ,  B >. )  =/=  (/) ) )
31, 2mpbiran 884 . . . 4  |-  ( ( O `  <. A ,  B >. )  e.  ( _V  \  1o )  <-> 
( O `  <. A ,  B >. )  =/=  (/) )
43anbi2i 675 . . 3  |-  ( (
<. A ,  B >.  e.  X  /\  ( O `
 <. A ,  B >. )  e.  ( _V 
\  1o ) )  <-> 
( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  =/=  (/) ) )
5 brwitnlem.o . . . 4  |-  O  Fn  X
6 elpreima 5661 . . . 4  |-  ( O  Fn  X  ->  ( <. A ,  B >.  e.  ( `' O "
( _V  \  1o ) )  <->  ( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  e.  ( _V  \  1o ) ) ) )
75, 6ax-mp 8 . . 3  |-  ( <. A ,  B >.  e.  ( `' O "
( _V  \  1o ) )  <->  ( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  e.  ( _V  \  1o ) ) )
8 ndmfv 5568 . . . . . 6  |-  ( -. 
<. A ,  B >.  e. 
dom  O  ->  ( O `
 <. A ,  B >. )  =  (/) )
98necon1ai 2501 . . . . 5  |-  ( ( O `  <. A ,  B >. )  =/=  (/)  ->  <. A ,  B >.  e.  dom  O
)
10 fndm 5359 . . . . . 6  |-  ( O  Fn  X  ->  dom  O  =  X )
115, 10ax-mp 8 . . . . 5  |-  dom  O  =  X
129, 11syl6eleq 2386 . . . 4  |-  ( ( O `  <. A ,  B >. )  =/=  (/)  ->  <. A ,  B >.  e.  X )
1312pm4.71ri 614 . . 3  |-  ( ( O `  <. A ,  B >. )  =/=  (/)  <->  ( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  =/=  (/) ) )
144, 7, 133bitr4i 268 . 2  |-  ( <. A ,  B >.  e.  ( `' O "
( _V  \  1o ) )  <->  ( O `  <. A ,  B >. )  =/=  (/) )
15 brwitnlem.r . . . 4  |-  R  =  ( `' O "
( _V  \  1o ) )
1615breqi 4045 . . 3  |-  ( A R B  <->  A ( `' O " ( _V 
\  1o ) ) B )
17 df-br 4040 . . 3  |-  ( A ( `' O "
( _V  \  1o ) ) B  <->  <. A ,  B >.  e.  ( `' O " ( _V 
\  1o ) ) )
1816, 17bitri 240 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  ( `' O " ( _V 
\  1o ) ) )
19 df-ov 5877 . . 3  |-  ( A O B )  =  ( O `  <. A ,  B >. )
2019neeq1i 2469 . 2  |-  ( ( A O B )  =/=  (/)  <->  ( O `  <. A ,  B >. )  =/=  (/) )
2114, 18, 203bitr4i 268 1  |-  ( A R B  <->  ( A O B )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    \ cdif 3162   (/)c0 3468   <.cop 3656   class class class wbr 4039   `'ccnv 4704   dom cdm 4705   "cima 4708    Fn wfn 5266   ` cfv 5271  (class class class)co 5874   1oc1o 6488
This theorem is referenced by:  brgic  14749  brlmic  15837  hmph  17483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5877  df-1o 6495
  Copyright terms: Public domain W3C validator