MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwitnlem Unicode version

Theorem brwitnlem 6506
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
brwitnlem.r  |-  R  =  ( `' O "
( _V  \  1o ) )
brwitnlem.o  |-  O  Fn  X
Assertion
Ref Expression
brwitnlem  |-  ( A R B  <->  ( A O B )  =/=  (/) )

Proof of Theorem brwitnlem
StepHypRef Expression
1 fvex 5539 . . . . 5  |-  ( O `
 <. A ,  B >. )  e.  _V
2 dif1o 6499 . . . . 5  |-  ( ( O `  <. A ,  B >. )  e.  ( _V  \  1o )  <-> 
( ( O `  <. A ,  B >. )  e.  _V  /\  ( O `  <. A ,  B >. )  =/=  (/) ) )
31, 2mpbiran 884 . . . 4  |-  ( ( O `  <. A ,  B >. )  e.  ( _V  \  1o )  <-> 
( O `  <. A ,  B >. )  =/=  (/) )
43anbi2i 675 . . 3  |-  ( (
<. A ,  B >.  e.  X  /\  ( O `
 <. A ,  B >. )  e.  ( _V 
\  1o ) )  <-> 
( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  =/=  (/) ) )
5 brwitnlem.o . . . 4  |-  O  Fn  X
6 elpreima 5645 . . . 4  |-  ( O  Fn  X  ->  ( <. A ,  B >.  e.  ( `' O "
( _V  \  1o ) )  <->  ( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  e.  ( _V  \  1o ) ) ) )
75, 6ax-mp 8 . . 3  |-  ( <. A ,  B >.  e.  ( `' O "
( _V  \  1o ) )  <->  ( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  e.  ( _V  \  1o ) ) )
8 ndmfv 5552 . . . . . 6  |-  ( -. 
<. A ,  B >.  e. 
dom  O  ->  ( O `
 <. A ,  B >. )  =  (/) )
98necon1ai 2488 . . . . 5  |-  ( ( O `  <. A ,  B >. )  =/=  (/)  ->  <. A ,  B >.  e.  dom  O
)
10 fndm 5343 . . . . . 6  |-  ( O  Fn  X  ->  dom  O  =  X )
115, 10ax-mp 8 . . . . 5  |-  dom  O  =  X
129, 11syl6eleq 2373 . . . 4  |-  ( ( O `  <. A ,  B >. )  =/=  (/)  ->  <. A ,  B >.  e.  X )
1312pm4.71ri 614 . . 3  |-  ( ( O `  <. A ,  B >. )  =/=  (/)  <->  ( <. A ,  B >.  e.  X  /\  ( O `  <. A ,  B >. )  =/=  (/) ) )
144, 7, 133bitr4i 268 . 2  |-  ( <. A ,  B >.  e.  ( `' O "
( _V  \  1o ) )  <->  ( O `  <. A ,  B >. )  =/=  (/) )
15 brwitnlem.r . . . 4  |-  R  =  ( `' O "
( _V  \  1o ) )
1615breqi 4029 . . 3  |-  ( A R B  <->  A ( `' O " ( _V 
\  1o ) ) B )
17 df-br 4024 . . 3  |-  ( A ( `' O "
( _V  \  1o ) ) B  <->  <. A ,  B >.  e.  ( `' O " ( _V 
\  1o ) ) )
1816, 17bitri 240 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  ( `' O " ( _V 
\  1o ) ) )
19 df-ov 5861 . . 3  |-  ( A O B )  =  ( O `  <. A ,  B >. )
2019neeq1i 2456 . 2  |-  ( ( A O B )  =/=  (/)  <->  ( O `  <. A ,  B >. )  =/=  (/) )
2114, 18, 203bitr4i 268 1  |-  ( A R B  <->  ( A O B )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    \ cdif 3149   (/)c0 3455   <.cop 3643   class class class wbr 4023   `'ccnv 4688   dom cdm 4689   "cima 4692    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   1oc1o 6472
This theorem is referenced by:  brgic  14733  brlmic  15821  hmph  17467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5861  df-1o 6479
  Copyright terms: Public domain W3C validator