Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bsmgrli Unicode version

Theorem bsmgrli 25443
Description: The base set of an operation with a right and left identity element is not empty. (Contributed by FL, 18-Feb-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
bsmgrli.1  |-  X  =  ran  G
Assertion
Ref Expression
bsmgrli  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  X  =/=  (/) )

Proof of Theorem bsmgrli
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bsmgrli.1 . . 3  |-  X  =  ran  G
21isexid2 21008 . 2  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  E. y  e.  X  A. x  e.  X  ( ( y G x )  =  x  /\  ( x G y )  =  x ) )
3 rexn0 3569 . 2  |-  ( E. y  e.  X  A. x  e.  X  (
( y G x )  =  x  /\  ( x G y )  =  x )  ->  X  =/=  (/) )
42, 3syl 15 1  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  X  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    i^i cin 3164   (/)c0 3468   ran crn 4706  (class class class)co 5874    ExId cexid 20997   Magmacmagm 21001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-ov 5877  df-exid 20998  df-mgm 21002
  Copyright terms: Public domain W3C validator