Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bsstrs Unicode version

Theorem bsstrs 26146
Description: Being on the same side is a transitive relation. Segment version of bsstr 26128. (For my private use only. Don't use.) (Contributed by FL, 14-Jul-2016.)
Hypotheses
Ref Expression
bsstrs.1  |-  P  =  (PPoints `  G )
bsstrs.2  |-  L  =  (PLines `  G )
bsstrs.3  |-  S  =  ( seg `  G
)
bsstrs.4  |-  ( ph  ->  G  e. Ibg )
bsstrs.5  |-  ( ph  ->  M  e.  L )
bsstrs.6  |-  ( ph  ->  X  e.  ( P 
\  M ) )
bsstrs.7  |-  ( ph  ->  Y  e.  ( P 
\  M ) )
bsstrs.8  |-  ( ph  ->  Z  e.  ( P 
\  M ) )
bsstrs.9  |-  ( ph  ->  ( ( X S Y )  i^i  M
)  =  (/) )
bsstrs.10  |-  ( ph  ->  ( ( Y S Z )  i^i  M
)  =  (/) )
Assertion
Ref Expression
bsstrs  |-  ( ph  ->  ( ( X S Z )  i^i  M
)  =  (/) )

Proof of Theorem bsstrs
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bsstrs.10 . . 3  |-  ( ph  ->  ( ( Y S Z )  i^i  M
)  =  (/) )
2 oveq1 5865 . . . . 5  |-  ( X  =  Y  ->  ( X S Z )  =  ( Y S Z ) )
32ineq1d 3369 . . . 4  |-  ( X  =  Y  ->  (
( X S Z )  i^i  M )  =  ( ( Y S Z )  i^i 
M ) )
43eqeq1d 2291 . . 3  |-  ( X  =  Y  ->  (
( ( X S Z )  i^i  M
)  =  (/)  <->  ( ( Y S Z )  i^i 
M )  =  (/) ) )
51, 4syl5ibr 212 . 2  |-  ( X  =  Y  ->  ( ph  ->  ( ( X S Z )  i^i 
M )  =  (/) ) )
6 bsstrs.1 . . . . . . . . 9  |-  P  =  (PPoints `  G )
7 bsstrs.3 . . . . . . . . 9  |-  S  =  ( seg `  G
)
8 bsstrs.4 . . . . . . . . 9  |-  ( ph  ->  G  e. Ibg )
9 bsstrs.6 . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( P 
\  M ) )
10 eldifi 3298 . . . . . . . . . 10  |-  ( X  e.  ( P  \  M )  ->  X  e.  P )
119, 10syl 15 . . . . . . . . 9  |-  ( ph  ->  X  e.  P )
126, 7, 8, 11sgplpte22 26138 . . . . . . . 8  |-  ( ph  ->  ( X S X )  =  { X } )
1312ineq1d 3369 . . . . . . 7  |-  ( ph  ->  ( ( X S X )  i^i  M
)  =  ( { X }  i^i  M
) )
14 incom 3361 . . . . . . . 8  |-  ( { X }  i^i  M
)  =  ( M  i^i  { X }
)
15 eldifn 3299 . . . . . . . . . 10  |-  ( X  e.  ( P  \  M )  ->  -.  X  e.  M )
169, 15syl 15 . . . . . . . . 9  |-  ( ph  ->  -.  X  e.  M
)
17 disjsn 3693 . . . . . . . . 9  |-  ( ( M  i^i  { X } )  =  (/)  <->  -.  X  e.  M )
1816, 17sylibr 203 . . . . . . . 8  |-  ( ph  ->  ( M  i^i  { X } )  =  (/) )
1914, 18syl5eq 2327 . . . . . . 7  |-  ( ph  ->  ( { X }  i^i  M )  =  (/) )
2013, 19eqtrd 2315 . . . . . 6  |-  ( ph  ->  ( ( X S X )  i^i  M
)  =  (/) )
2120a1i 10 . . . . 5  |-  ( -.  X  =  Y  -> 
( ph  ->  ( ( X S X )  i^i  M )  =  (/) ) )
22 oveq2 5866 . . . . . . . 8  |-  ( Z  =  X  ->  ( X S Z )  =  ( X S X ) )
2322ineq1d 3369 . . . . . . 7  |-  ( Z  =  X  ->  (
( X S Z )  i^i  M )  =  ( ( X S X )  i^i 
M ) )
2423eqeq1d 2291 . . . . . 6  |-  ( Z  =  X  ->  (
( ( X S Z )  i^i  M
)  =  (/)  <->  ( ( X S X )  i^i 
M )  =  (/) ) )
2524imbi2d 307 . . . . 5  |-  ( Z  =  X  ->  (
( ph  ->  ( ( X S Z )  i^i  M )  =  (/) )  <->  ( ph  ->  ( ( X S X )  i^i  M )  =  (/) ) ) )
2621, 25syl5ibr 212 . . . 4  |-  ( Z  =  X  ->  ( -.  X  =  Y  ->  ( ph  ->  (
( X S Z )  i^i  M )  =  (/) ) ) )
2726eqcoms 2286 . . 3  |-  ( X  =  Z  ->  ( -.  X  =  Y  ->  ( ph  ->  (
( X S Z )  i^i  M )  =  (/) ) ) )
28 bsstrs.9 . . . . . . . 8  |-  ( ph  ->  ( ( X S Y )  i^i  M
)  =  (/) )
29 oveq2 5866 . . . . . . . . . 10  |-  ( Z  =  Y  ->  ( X S Z )  =  ( X S Y ) )
3029ineq1d 3369 . . . . . . . . 9  |-  ( Z  =  Y  ->  (
( X S Z )  i^i  M )  =  ( ( X S Y )  i^i 
M ) )
3130eqeq1d 2291 . . . . . . . 8  |-  ( Z  =  Y  ->  (
( ( X S Z )  i^i  M
)  =  (/)  <->  ( ( X S Y )  i^i 
M )  =  (/) ) )
3228, 31syl5ibr 212 . . . . . . 7  |-  ( Z  =  Y  ->  ( ph  ->  ( ( X S Z )  i^i 
M )  =  (/) ) )
3332a1d 22 . . . . . 6  |-  ( Z  =  Y  ->  ( -.  X  =  Y  ->  ( ph  ->  (
( X S Z )  i^i  M )  =  (/) ) ) )
3433a1d 22 . . . . 5  |-  ( Z  =  Y  ->  ( -.  X  =  Z  ->  ( -.  X  =  Y  ->  ( ph  ->  ( ( X S Z )  i^i  M
)  =  (/) ) ) ) )
3534eqcoms 2286 . . . 4  |-  ( Y  =  Z  ->  ( -.  X  =  Z  ->  ( -.  X  =  Y  ->  ( ph  ->  ( ( X S Z )  i^i  M
)  =  (/) ) ) ) )
368adantl 452 . . . . . . . 8  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  G  e. Ibg )
3711adantl 452 . . . . . . . 8  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  X  e.  P
)
38 eqid 2283 . . . . . . . 8  |-  (btw `  G )  =  (btw
`  G )
39 bsstrs.8 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( P 
\  M ) )
40 eldifi 3298 . . . . . . . . . 10  |-  ( Z  e.  ( P  \  M )  ->  Z  e.  P )
4139, 40syl 15 . . . . . . . . 9  |-  ( ph  ->  Z  e.  P )
4241adantl 452 . . . . . . . 8  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  Z  e.  P
)
43 df-ne 2448 . . . . . . . . . . 11  |-  ( X  =/=  Z  <->  -.  X  =  Z )
4443biimpri 197 . . . . . . . . . 10  |-  ( -.  X  =  Z  ->  X  =/=  Z )
45443ad2ant2 977 . . . . . . . . 9  |-  ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  ->  X  =/=  Z )
4645adantr 451 . . . . . . . 8  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  X  =/=  Z
)
476, 7, 36, 37, 38, 42, 46sgplpte21 26132 . . . . . . 7  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  ( X S Z )  =  {
x  e.  P  | 
( x  e.  ( X (btw `  G
) Z )  \/  x  =  X  \/  x  =  Z ) } )
4847ineq1d 3369 . . . . . 6  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  ( ( X S Z )  i^i 
M )  =  ( { x  e.  P  |  ( x  e.  ( X (btw `  G ) Z )  \/  x  =  X  \/  x  =  Z ) }  i^i  M
) )
49 inrab2 3441 . . . . . . 7  |-  ( { x  e.  P  | 
( x  e.  ( X (btw `  G
) Z )  \/  x  =  X  \/  x  =  Z ) }  i^i  M )  =  { x  e.  ( P  i^i  M )  |  ( x  e.  ( X (btw `  G ) Z )  \/  x  =  X  \/  x  =  Z ) }
50 incom 3361 . . . . . . . . . . . . . 14  |-  ( M  i^i  ( X (btw
`  G ) Z ) )  =  ( ( X (btw `  G ) Z )  i^i  M )
51 bsstrs.2 . . . . . . . . . . . . . . 15  |-  L  =  (PLines `  G )
528adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  G  e. Ibg )
53 bsstrs.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  L )
5453adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  M  e.  L )
559adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  X  e.  ( P  \  M
) )
56 bsstrs.7 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Y  e.  ( P 
\  M ) )
5756adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  Y  e.  ( P  \  M
) )
5839adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  Z  e.  ( P  \  M
) )
5911adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  X  e.  P )
60 eldifi 3298 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( Y  e.  ( P  \  M )  ->  Y  e.  P )
6156, 60syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  Y  e.  P )
6261adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  Y  e.  P )
63 df-ne 2448 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( X  =/=  Y  <->  -.  X  =  Y )
6463biimpri 197 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  X  =  Y  ->  X  =/=  Y )
65643ad2ant3 978 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  ->  X  =/=  Y )
6665adantl 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  X  =/=  Y )
676, 7, 52, 59, 38, 62, 66sgplpte21 26132 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( X S Y )  =  { z  e.  P  |  ( z  e.  ( X (btw `  G ) Y )  \/  z  =  X  \/  z  =  Y ) } )
6867ineq1d 3369 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( X S Y )  i^i  M )  =  ( { z  e.  P  |  ( z  e.  ( X (btw `  G ) Y )  \/  z  =  X  \/  z  =  Y ) }  i^i  M ) )
69 inrab2 3441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { z  e.  P  | 
( z  e.  ( X (btw `  G
) Y )  \/  z  =  X  \/  z  =  Y ) }  i^i  M )  =  { z  e.  ( P  i^i  M )  |  ( z  e.  ( X (btw `  G ) Y )  \/  z  =  X  \/  z  =  Y ) }
7068, 69syl6eq 2331 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( X S Y )  i^i  M )  =  { z  e.  ( P  i^i  M
)  |  ( z  e.  ( X (btw
`  G ) Y )  \/  z  =  X  \/  z  =  Y ) } )
71 eqtr2 2301 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( X S Y )  i^i  M
)  =  { z  e.  ( P  i^i  M )  |  ( z  e.  ( X (btw
`  G ) Y )  \/  z  =  X  \/  z  =  Y ) }  /\  ( ( X S Y )  i^i  M
)  =  (/) )  ->  { z  e.  ( P  i^i  M )  |  ( z  e.  ( X (btw `  G ) Y )  \/  z  =  X  \/  z  =  Y ) }  =  (/) )
72 rabeq0 3476 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { z  e.  ( P  i^i  M )  |  ( z  e.  ( X (btw `  G
) Y )  \/  z  =  X  \/  z  =  Y ) }  =  (/)  <->  A. z  e.  ( P  i^i  M
)  -.  ( z  e.  ( X (btw
`  G ) Y )  \/  z  =  X  \/  z  =  Y ) )
73 3ioran 950 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( z  e.  ( X (btw `  G
) Y )  \/  z  =  X  \/  z  =  Y )  <->  ( -.  z  e.  ( X (btw `  G
) Y )  /\  -.  z  =  X  /\  -.  z  =  Y ) )
7473ralbii 2567 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  ( P  i^i  M )  -.  (
z  e.  ( X (btw `  G ) Y )  \/  z  =  X  \/  z  =  Y )  <->  A. z  e.  ( P  i^i  M
) ( -.  z  e.  ( X (btw `  G ) Y )  /\  -.  z  =  X  /\  -.  z  =  Y ) )
75 r19.26-3 2677 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. z  e.  ( P  i^i  M ) ( -.  z  e.  ( X (btw `  G ) Y )  /\  -.  z  =  X  /\  -.  z  =  Y
)  <->  ( A. z  e.  ( P  i^i  M
)  -.  z  e.  ( X (btw `  G ) Y )  /\  A. z  e.  ( P  i^i  M
)  -.  z  =  X  /\  A. z  e.  ( P  i^i  M
)  -.  z  =  Y ) )
768isibg1a 26111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ph  ->  G  e. Ig )
776, 51, 76, 53isig12 26064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  M  C_  P )
78 ssid 3197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  M  C_  M
7978jctr 526 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( M 
C_  P  ->  ( M  C_  P  /\  M  C_  M ) )
80 ssin 3391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( M  C_  P  /\  M  C_  M )  <->  M  C_  ( P  i^i  M ) )
8179, 80sylib 188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( M 
C_  P  ->  M  C_  ( P  i^i  M
) )
8277, 81syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  M  C_  ( P  i^i  M ) )
8382sseld 3179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  ( z  e.  M  ->  z  e.  ( P  i^i  M ) ) )
8483imim1d 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->  ( ( z  e.  ( P  i^i  M
)  ->  -.  z  e.  ( X (btw `  G ) Y ) )  ->  ( z  e.  M  ->  -.  z  e.  ( X (btw `  G ) Y ) ) ) )
8584ralimdv2 2623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( A. z  e.  ( P  i^i  M
)  -.  z  e.  ( X (btw `  G ) Y )  ->  A. z  e.  M  -.  z  e.  ( X (btw `  G ) Y ) ) )
86 disjr 3496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( X (btw `  G ) Y )  i^i  M )  =  (/) 
<-> 
A. z  e.  M  -.  z  e.  ( X (btw `  G ) Y ) )
8786biimpri 197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A. z  e.  M  -.  z  e.  ( X
(btw `  G ) Y )  ->  (
( X (btw `  G ) Y )  i^i  M )  =  (/) )
8887a1d 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A. z  e.  M  -.  z  e.  ( X
(btw `  G ) Y )  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) )
8985, 88syl6 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( A. z  e.  ( P  i^i  M
)  -.  z  e.  ( X (btw `  G ) Y )  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) ) )
9089adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( A. z  e.  ( P  i^i  M )  -.  z  e.  ( X (btw `  G ) Y )  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) ) )
9190pm2.43b 46 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A. z  e.  ( P  i^i  M )  -.  z  e.  ( X (btw `  G ) Y )  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) )
92913ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A. z  e.  ( P  i^i  M )  -.  z  e.  ( X (btw `  G
) Y )  /\  A. z  e.  ( P  i^i  M )  -.  z  =  X  /\  A. z  e.  ( P  i^i  M )  -.  z  =  Y )  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) )
9375, 92sylbi 187 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  ( P  i^i  M ) ( -.  z  e.  ( X (btw `  G ) Y )  /\  -.  z  =  X  /\  -.  z  =  Y
)  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) )
9474, 93sylbi 187 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. z  e.  ( P  i^i  M )  -.  (
z  e.  ( X (btw `  G ) Y )  \/  z  =  X  \/  z  =  Y )  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) )
9572, 94sylbi 187 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { z  e.  ( P  i^i  M )  |  ( z  e.  ( X (btw `  G
) Y )  \/  z  =  X  \/  z  =  Y ) }  =  (/)  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) )
9671, 95syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( X S Y )  i^i  M
)  =  { z  e.  ( P  i^i  M )  |  ( z  e.  ( X (btw
`  G ) Y )  \/  z  =  X  \/  z  =  Y ) }  /\  ( ( X S Y )  i^i  M
)  =  (/) )  -> 
( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) )
9796ex 423 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X S Y )  i^i  M )  =  { z  e.  ( P  i^i  M
)  |  ( z  e.  ( X (btw
`  G ) Y )  \/  z  =  X  \/  z  =  Y ) }  ->  ( ( ( X S Y )  i^i  M
)  =  (/)  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) ) )
9870, 97syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( ( X S Y )  i^i  M
)  =  (/)  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( X (btw
`  G ) Y )  i^i  M )  =  (/) ) ) )
9998pm2.43a 45 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( ( X S Y )  i^i  M
)  =  (/)  ->  (
( X (btw `  G ) Y )  i^i  M )  =  (/) ) )
10099ex 423 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  ->  (
( ( X S Y )  i^i  M
)  =  (/)  ->  (
( X (btw `  G ) Y )  i^i  M )  =  (/) ) ) )
10128, 100mpid 37 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  ->  (
( X (btw `  G ) Y )  i^i  M )  =  (/) ) )
102101imp 418 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( X (btw `  G ) Y )  i^i  M )  =  (/) )
10341adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  Z  e.  P )
104 df-ne 2448 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Y  =/=  Z  <->  -.  Y  =  Z )
105104biimpri 197 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  Y  =  Z  ->  Y  =/=  Z )
1061053ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  ->  Y  =/=  Z )
107106adantl 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  Y  =/=  Z )
1086, 7, 52, 62, 38, 103, 107sgplpte21 26132 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( Y S Z )  =  { z  e.  P  |  ( z  e.  ( Y (btw `  G ) Z )  \/  z  =  Y  \/  z  =  Z ) } )
109108ineq1d 3369 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( Y S Z )  i^i  M )  =  ( { z  e.  P  |  ( z  e.  ( Y (btw `  G ) Z )  \/  z  =  Y  \/  z  =  Z ) }  i^i  M ) )
110 inrab2 3441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { z  e.  P  | 
( z  e.  ( Y (btw `  G
) Z )  \/  z  =  Y  \/  z  =  Z ) }  i^i  M )  =  { z  e.  ( P  i^i  M )  |  ( z  e.  ( Y (btw `  G ) Z )  \/  z  =  Y  \/  z  =  Z ) }
111109, 110syl6eq 2331 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( Y S Z )  i^i  M )  =  { z  e.  ( P  i^i  M
)  |  ( z  e.  ( Y (btw
`  G ) Z )  \/  z  =  Y  \/  z  =  Z ) } )
112 eqtr2 2301 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( Y S Z )  i^i  M
)  =  { z  e.  ( P  i^i  M )  |  ( z  e.  ( Y (btw
`  G ) Z )  \/  z  =  Y  \/  z  =  Z ) }  /\  ( ( Y S Z )  i^i  M
)  =  (/) )  ->  { z  e.  ( P  i^i  M )  |  ( z  e.  ( Y (btw `  G ) Z )  \/  z  =  Y  \/  z  =  Z ) }  =  (/) )
113 rabeq0 3476 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { z  e.  ( P  i^i  M )  |  ( z  e.  ( Y (btw `  G
) Z )  \/  z  =  Y  \/  z  =  Z ) }  =  (/)  <->  A. z  e.  ( P  i^i  M
)  -.  ( z  e.  ( Y (btw
`  G ) Z )  \/  z  =  Y  \/  z  =  Z ) )
114 3ioran 950 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( z  e.  ( Y (btw `  G
) Z )  \/  z  =  Y  \/  z  =  Z )  <->  ( -.  z  e.  ( Y (btw `  G
) Z )  /\  -.  z  =  Y  /\  -.  z  =  Z ) )
115114ralbii 2567 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  ( P  i^i  M )  -.  (
z  e.  ( Y (btw `  G ) Z )  \/  z  =  Y  \/  z  =  Z )  <->  A. z  e.  ( P  i^i  M
) ( -.  z  e.  ( Y (btw `  G ) Z )  /\  -.  z  =  Y  /\  -.  z  =  Z ) )
116 r19.26-3 2677 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. z  e.  ( P  i^i  M ) ( -.  z  e.  ( Y (btw `  G ) Z )  /\  -.  z  =  Y  /\  -.  z  =  Z
)  <->  ( A. z  e.  ( P  i^i  M
)  -.  z  e.  ( Y (btw `  G ) Z )  /\  A. z  e.  ( P  i^i  M
)  -.  z  =  Y  /\  A. z  e.  ( P  i^i  M
)  -.  z  =  Z ) )
11783imim1d 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->  ( ( z  e.  ( P  i^i  M
)  ->  -.  z  e.  ( Y (btw `  G ) Z ) )  ->  ( z  e.  M  ->  -.  z  e.  ( Y (btw `  G ) Z ) ) ) )
118117ralimdv2 2623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( A. z  e.  ( P  i^i  M
)  -.  z  e.  ( Y (btw `  G ) Z )  ->  A. z  e.  M  -.  z  e.  ( Y (btw `  G ) Z ) ) )
119 disjr 3496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( Y (btw `  G ) Z )  i^i  M )  =  (/) 
<-> 
A. z  e.  M  -.  z  e.  ( Y (btw `  G ) Z ) )
120119biimpri 197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A. z  e.  M  -.  z  e.  ( Y
(btw `  G ) Z )  ->  (
( Y (btw `  G ) Z )  i^i  M )  =  (/) )
121120a1d 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A. z  e.  M  -.  z  e.  ( Y
(btw `  G ) Z )  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) )
122118, 121syl6 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( A. z  e.  ( P  i^i  M
)  -.  z  e.  ( Y (btw `  G ) Z )  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) ) )
123122adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( A. z  e.  ( P  i^i  M )  -.  z  e.  ( Y (btw `  G ) Z )  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) ) )
124123pm2.43b 46 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A. z  e.  ( P  i^i  M )  -.  z  e.  ( Y (btw `  G ) Z )  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) )
1251243ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A. z  e.  ( P  i^i  M )  -.  z  e.  ( Y (btw `  G
) Z )  /\  A. z  e.  ( P  i^i  M )  -.  z  =  Y  /\  A. z  e.  ( P  i^i  M )  -.  z  =  Z )  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) )
126116, 125sylbi 187 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  ( P  i^i  M ) ( -.  z  e.  ( Y (btw `  G ) Z )  /\  -.  z  =  Y  /\  -.  z  =  Z
)  ->  ( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) )
127115, 126sylbi 187 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. z  e.  ( P  i^i  M )  -.  (
z  e.  ( Y (btw `  G ) Z )  \/  z  =  Y  \/  z  =  Z )  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) )
128113, 127sylbi 187 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { z  e.  ( P  i^i  M )  |  ( z  e.  ( Y (btw `  G
) Z )  \/  z  =  Y  \/  z  =  Z ) }  =  (/)  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) )
129112, 128syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( Y S Z )  i^i  M
)  =  { z  e.  ( P  i^i  M )  |  ( z  e.  ( Y (btw
`  G ) Z )  \/  z  =  Y  \/  z  =  Z ) }  /\  ( ( Y S Z )  i^i  M
)  =  (/) )  -> 
( ( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) )
130129ex 423 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Y S Z )  i^i  M )  =  { z  e.  ( P  i^i  M
)  |  ( z  e.  ( Y (btw
`  G ) Z )  \/  z  =  Y  \/  z  =  Z ) }  ->  ( ( ( Y S Z )  i^i  M
)  =  (/)  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) ) )
131111, 130syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( ( Y S Z )  i^i  M
)  =  (/)  ->  (
( ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  -> 
( ( Y (btw
`  G ) Z )  i^i  M )  =  (/) ) ) )
132131pm2.43a 45 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( ( Y S Z )  i^i  M
)  =  (/)  ->  (
( Y (btw `  G ) Z )  i^i  M )  =  (/) ) )
133132ex 423 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  ->  (
( ( Y S Z )  i^i  M
)  =  (/)  ->  (
( Y (btw `  G ) Z )  i^i  M )  =  (/) ) ) )
1341, 133mpid 37 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  ->  (
( Y (btw `  G ) Z )  i^i  M )  =  (/) ) )
135134imp 418 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( Y (btw `  G ) Z )  i^i  M )  =  (/) )
1366, 51, 38, 52, 54, 55, 57, 58, 102, 135bsstr 26128 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( X (btw `  G ) Z )  i^i  M )  =  (/) )
13750, 136syl5eq 2327 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( M  i^i  ( X (btw
`  G ) Z ) )  =  (/) )
138 disj 3495 . . . . . . . . . . . . 13  |-  ( ( M  i^i  ( X (btw `  G ) Z ) )  =  (/) 
<-> 
A. x  e.  M  -.  x  e.  ( X (btw `  G ) Z ) )
139137, 138sylib 188 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  A. x  e.  M  -.  x  e.  ( X (btw `  G ) Z ) )
140 risset 2590 . . . . . . . . . . . . . . 15  |-  ( X  e.  M  <->  E. x  e.  M  x  =  X )
14116, 140sylnib 295 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  E. x  e.  M  x  =  X )
142141adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  -.  E. x  e.  M  x  =  X )
143 ralnex 2553 . . . . . . . . . . . . 13  |-  ( A. x  e.  M  -.  x  =  X  <->  -.  E. x  e.  M  x  =  X )
144142, 143sylibr 203 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  A. x  e.  M  -.  x  =  X )
145 eldifn 3299 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  ( P  \  M )  ->  -.  Z  e.  M )
14639, 145syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  Z  e.  M
)
147146adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  -.  Z  e.  M )
148 risset 2590 . . . . . . . . . . . . . 14  |-  ( Z  e.  M  <->  E. x  e.  M  x  =  Z )
149147, 148sylnib 295 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  -.  E. x  e.  M  x  =  Z )
150 ralnex 2553 . . . . . . . . . . . . 13  |-  ( A. x  e.  M  -.  x  =  Z  <->  -.  E. x  e.  M  x  =  Z )
151149, 150sylibr 203 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  A. x  e.  M  -.  x  =  Z )
152 r19.26-3 2677 . . . . . . . . . . . 12  |-  ( A. x  e.  M  ( -.  x  e.  ( X (btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z
)  <->  ( A. x  e.  M  -.  x  e.  ( X (btw `  G ) Z )  /\  A. x  e.  M  -.  x  =  X  /\  A. x  e.  M  -.  x  =  Z ) )
153139, 144, 151, 152syl3anbrc 1136 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  A. x  e.  M  ( -.  x  e.  ( X
(btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z
) )
154 inss2 3390 . . . . . . . . . . . . . . . 16  |-  ( P  i^i  M )  C_  M
155154a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P  i^i  M
)  C_  M )
156155sseld 3179 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( P  i^i  M )  ->  x  e.  M
) )
157156imim1d 69 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  M  ->  ( -.  x  e.  ( X
(btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z
) )  ->  (
x  e.  ( P  i^i  M )  -> 
( -.  x  e.  ( X (btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) ) ) )
158157adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  (
( x  e.  M  ->  ( -.  x  e.  ( X (btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) )  -> 
( x  e.  ( P  i^i  M )  ->  ( -.  x  e.  ( X (btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) ) ) )
159158ralimdv2 2623 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( A. x  e.  M  ( -.  x  e.  ( X (btw `  G
) Z )  /\  -.  x  =  X  /\  -.  x  =  Z )  ->  A. x  e.  ( P  i^i  M
) ( -.  x  e.  ( X (btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) ) )
160153, 159mpd 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  A. x  e.  ( P  i^i  M
) ( -.  x  e.  ( X (btw `  G ) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) )
161 3ioran 950 . . . . . . . . . . . 12  |-  ( -.  ( x  e.  ( X (btw `  G
) Z )  \/  x  =  X  \/  x  =  Z )  <->  ( -.  x  e.  ( X (btw `  G
) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) )
162161a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( -.  ( x  e.  ( X (btw `  G
) Z )  \/  x  =  X  \/  x  =  Z )  <->  ( -.  x  e.  ( X (btw `  G
) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) ) )
163162ralbidv 2563 . . . . . . . . . 10  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  ( A. x  e.  ( P  i^i  M )  -.  ( x  e.  ( X (btw `  G
) Z )  \/  x  =  X  \/  x  =  Z )  <->  A. x  e.  ( P  i^i  M ) ( -.  x  e.  ( X (btw `  G
) Z )  /\  -.  x  =  X  /\  -.  x  =  Z ) ) )
164160, 163mpbird 223 . . . . . . . . 9  |-  ( (
ph  /\  ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y ) )  ->  A. x  e.  ( P  i^i  M
)  -.  ( x  e.  ( X (btw
`  G ) Z )  \/  x  =  X  \/  x  =  Z ) )
165164ancoms 439 . . . . . . . 8  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  A. x  e.  ( P  i^i  M )  -.  ( x  e.  ( X (btw `  G ) Z )  \/  x  =  X  \/  x  =  Z ) )
166 rabeq0 3476 . . . . . . . 8  |-  ( { x  e.  ( P  i^i  M )  |  ( x  e.  ( X (btw `  G
) Z )  \/  x  =  X  \/  x  =  Z ) }  =  (/)  <->  A. x  e.  ( P  i^i  M
)  -.  ( x  e.  ( X (btw
`  G ) Z )  \/  x  =  X  \/  x  =  Z ) )
167165, 166sylibr 203 . . . . . . 7  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  { x  e.  ( P  i^i  M
)  |  ( x  e.  ( X (btw
`  G ) Z )  \/  x  =  X  \/  x  =  Z ) }  =  (/) )
16849, 167syl5eq 2327 . . . . . 6  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  ( { x  e.  P  |  (
x  e.  ( X (btw `  G ) Z )  \/  x  =  X  \/  x  =  Z ) }  i^i  M )  =  (/) )
16948, 168eqtrd 2315 . . . . 5  |-  ( ( ( -.  Y  =  Z  /\  -.  X  =  Z  /\  -.  X  =  Y )  /\  ph )  ->  ( ( X S Z )  i^i 
M )  =  (/) )
1701693exp1 1167 . . . 4  |-  ( -.  Y  =  Z  -> 
( -.  X  =  Z  ->  ( -.  X  =  Y  ->  (
ph  ->  ( ( X S Z )  i^i 
M )  =  (/) ) ) ) )
17135, 170pm2.61i 156 . . 3  |-  ( -.  X  =  Z  -> 
( -.  X  =  Y  ->  ( ph  ->  ( ( X S Z )  i^i  M
)  =  (/) ) ) )
17227, 171pm2.61i 156 . 2  |-  ( -.  X  =  Y  -> 
( ph  ->  ( ( X S Z )  i^i  M )  =  (/) ) )
1735, 172pm2.61i 156 1  |-  ( ph  ->  ( ( X S Z )  i^i  M
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   ` cfv 5255  (class class class)co 5858  PPointscpoints 26056  PLinescplines 26058  btwcbtw 26106  Ibgcibg 26107   segcseg 26130
This theorem is referenced by:  bosser  26167  pdiveql  26168
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-ig2 26061  df-ibg2 26109  df-seg2 26131
  Copyright terms: Public domain W3C validator