Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwncolinear5 Unicode version

Theorem btwncolinear5 25721
Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
btwncolinear5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  C  Colinear  <. A ,  B >. ) )

Proof of Theorem btwncolinear5
StepHypRef Expression
1 btwncolinear1 25717 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  A  Colinear  <. B ,  C >. ) )
2 colinearperm4 25713 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  C  Colinear  <. A ,  B >. ) )
31, 2sylibd 206 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  C  Colinear  <. A ,  B >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1717   <.cop 3760   class class class wbr 4153   ` cfv 5394   NNcn 9932   EEcee 25541    Btwn cbtwn 25542    Colinear ccolin 25685
This theorem is referenced by:  btwnconn1lem12  25746  lineunray  25795  lineelsb2  25796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-xp 4824  df-rel 4825  df-cnv 4826  df-iota 5358  df-fv 5402  df-oprab 6024  df-colinear 25689
  Copyright terms: Public domain W3C validator