Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem14 Unicode version

Theorem btwnconn1lem14 24723
Description: Lemma for btwnconn1 24724. Final statement of the theorem when  B  =/=  C. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )  ->  ( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) )

Proof of Theorem btwnconn1lem14
Dummy variables  b 
c  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  N  e.  NN )
2 simp2l 981 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
3 simp3r 984 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
4 simp3 957 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )
5 axsegcon 24555 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. c  e.  ( EE `  N ) ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. ) )
61, 2, 3, 4, 5syl121anc 1187 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. c  e.  ( EE `  N ) ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. ) )
7 simp3l 983 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
8 axsegcon 24555 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. d  e.  ( EE `  N ) ( C  Btwn  <. A , 
d >.  /\  <. C , 
d >.Cgr <. C ,  D >. ) )
91, 2, 7, 4, 8syl121anc 1187 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. d  e.  ( EE `  N ) ( C  Btwn  <. A , 
d >.  /\  <. C , 
d >.Cgr <. C ,  D >. ) )
10 reeanv 2707 . . . 4  |-  ( E. c  e.  ( EE
`  N ) E. d  e.  ( EE
`  N ) ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  <->  ( E. c  e.  ( EE `  N ) ( D 
Btwn  <. A ,  c
>.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  /\  E. d  e.  ( EE `  N
) ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )
116, 9, 10sylanbrc 645 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. c  e.  ( EE `  N ) E. d  e.  ( EE `  N ) ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )
1211adantr 451 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )  ->  E. c  e.  ( EE `  N ) E. d  e.  ( EE `  N ) ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )
13 simpl1 958 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  N  e.  NN )
14 simpl2l 1008 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
15 simprl 732 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  c  e.  ( EE `  N
) )
16 simpl3l 1010 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
17 simpl2r 1009 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
18 axsegcon 24555 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  E. b  e.  ( EE `  N ) ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. ) )
1913, 14, 15, 16, 17, 18syl122anc 1191 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  E. b  e.  ( EE `  N
) ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. ) )
20 simprr 733 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  d  e.  ( EE `  N
) )
21 simpl3r 1011 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
22 axsegcon 24555 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( d  Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr <. D ,  B >. ) )
2313, 14, 20, 21, 17, 22syl122anc 1191 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N
) ( d  Btwn  <. A ,  x >.  /\ 
<. d ,  x >.Cgr <. D ,  B >. ) )
2419, 23jca 518 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( E. b  e.  ( EE `  N ) ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  E. x  e.  ( EE `  N
) ( d  Btwn  <. A ,  x >.  /\ 
<. d ,  x >.Cgr <. D ,  B >. ) ) )
2524adantr 451 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( E. b  e.  ( EE `  N
) ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  E. x  e.  ( EE `  N
) ( d  Btwn  <. A ,  x >.  /\ 
<. d ,  x >.Cgr <. D ,  B >. ) ) )
26 reeanv 2707 . . . . . . . 8  |-  ( E. b  e.  ( EE
`  N ) E. x  e.  ( EE
`  N ) ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) )  <->  ( E. b  e.  ( EE `  N
) ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  E. x  e.  ( EE `  N
) ( d  Btwn  <. A ,  x >.  /\ 
<. d ,  x >.Cgr <. D ,  B >. ) ) )
2725, 26sylibr 203 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  ->  E. b  e.  ( EE `  N ) E. x  e.  ( EE
`  N ) ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) )
2813, 14, 173jca 1132 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )
2928adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )
3016, 21, 153jca 1132 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) ) )
3130adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) ) )
32 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  d  e.  ( EE `  N ) )
33 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  b  e.  ( EE `  N ) )
34 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  x  e.  ( EE `  N ) )
3532, 33, 343jca 1132 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( d  e.  ( EE `  N
)  /\  b  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )
3629, 31, 353jca 1132 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  x  e.  ( EE `  N ) ) ) )
37 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) )  ->  (
( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )
38 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) )  ->  (
( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) ) )
39 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) )  ->  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) )
4037, 38, 393jca 1132 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) )  ->  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) ) )
41 btwnconn1lem2 24711 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  x  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) ) )  ->  x  =  b )
4236, 40, 41syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) ) )  ->  x  =  b )
43 opeq2 3797 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  <. A ,  x >.  =  <. A , 
b >. )
4443breq2d 4035 . . . . . . . . . . . . . . . . 17  |-  ( x  =  b  ->  (
d  Btwn  <. A ,  x >. 
<->  d  Btwn  <. A , 
b >. ) )
45 opeq2 3797 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  <. d ,  x >.  =  <. d ,  b >. )
4645breq1d 4033 . . . . . . . . . . . . . . . . 17  |-  ( x  =  b  ->  ( <. d ,  x >.Cgr <. D ,  B >.  <->  <. d ,  b >.Cgr <. D ,  B >. ) )
4744, 46anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( x  =  b  ->  (
( d  Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr <. D ,  B >. )  <->  ( d  Btwn  <. A ,  b >.  /\ 
<. d ,  b >.Cgr <. D ,  B >. ) ) )
4847anbi2d 684 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  (
( ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  ( d  Btwn  <. A ,  x >.  /\ 
<. d ,  x >.Cgr <. D ,  B >. ) )  <->  ( ( c 
Btwn  <. A ,  b
>.  /\  <. c ,  b
>.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )
4948anbi2d 684 . . . . . . . . . . . . . 14  |-  ( x  =  b  ->  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) ) )  /\  ( ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  ( d  Btwn  <. A ,  x >.  /\ 
<. d ,  x >.Cgr <. D ,  B >. ) ) )  <->  ( (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) ) )
5049biimpac 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) ) )  /\  ( ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  ( d  Btwn  <. A ,  x >.  /\ 
<. d ,  x >.Cgr <. D ,  B >. ) ) )  /\  x  =  b )  -> 
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) ) )  /\  ( ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  ( d  Btwn  <. A ,  b >.  /\ 
<. d ,  b >.Cgr <. D ,  B >. ) ) ) )
5132, 33jca 518 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( d  e.  ( EE `  N
)  /\  b  e.  ( EE `  N ) ) )
5229, 31, 51jca32 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) ) )
53 simpll 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  -> 
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )
54 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  -> 
( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )
55 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  -> 
( ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  ( d  Btwn  <. A ,  b >.  /\ 
<. d ,  b >.Cgr <. D ,  B >. ) ) )
5653, 54, 553jca 1132 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  -> 
( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )
57 btwnconn1lem13 24722 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =  c  \/  D  =  d ) )
5852, 56, 57syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =  c  \/  D  =  d ) )
5958ex 423 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  -> 
( C  =  c  \/  D  =  d ) ) )
6050, 59syl5 28 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) )  /\  x  =  b )  -> 
( C  =  c  \/  D  =  d ) ) )
6160expdimp 426 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) ) )  -> 
( x  =  b  ->  ( C  =  c  \/  D  =  d ) ) )
6242, 61mpd 14 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
b  e.  ( EE
`  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) ) )  -> 
( C  =  c  \/  D  =  d ) )
6362an4s 799 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  /\  ( ( b  e.  ( EE `  N
)  /\  x  e.  ( EE `  N ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) ) ) )  -> 
( C  =  c  \/  D  =  d ) )
6463exp32 588 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( ( b  e.  ( EE `  N
)  /\  x  e.  ( EE `  N ) )  ->  ( (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) )  ->  ( C  =  c  \/  D  =  d ) ) ) )
6564rexlimdvv 2673 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( E. b  e.  ( EE `  N
) E. x  e.  ( EE `  N
) ( ( c 
Btwn  <. A ,  b
>.  /\  <. c ,  b
>.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  x >.  /\  <. d ,  x >.Cgr
<. D ,  B >. ) )  ->  ( C  =  c  \/  D  =  d ) ) )
6627, 65mpd 14 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( C  =  c  \/  D  =  d ) )
67 orcom 376 . . . . . . 7  |-  ( ( C  =  c  \/  D  =  d )  <-> 
( D  =  d  \/  C  =  c ) )
68 simprrl 740 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  ->  C  Btwn  <. A ,  d
>. )
6968adantl 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  ->  C  Btwn  <. A ,  d
>. )
70 opeq2 3797 . . . . . . . . . 10  |-  ( D  =  d  ->  <. A ,  D >.  =  <. A , 
d >. )
7170breq2d 4035 . . . . . . . . 9  |-  ( D  =  d  ->  ( C  Btwn  <. A ,  D >.  <-> 
C  Btwn  <. A , 
d >. ) )
7269, 71syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( D  =  d  ->  C  Btwn  <. A ,  D >. ) )
73 simprll 738 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )  ->  D  Btwn  <. A ,  c
>. )
7473adantl 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  ->  D  Btwn  <. A ,  c
>. )
75 opeq2 3797 . . . . . . . . . 10  |-  ( C  =  c  ->  <. A ,  C >.  =  <. A , 
c >. )
7675breq2d 4035 . . . . . . . . 9  |-  ( C  =  c  ->  ( D  Btwn  <. A ,  C >.  <-> 
D  Btwn  <. A , 
c >. ) )
7774, 76syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( C  =  c  ->  D  Btwn  <. A ,  C >. ) )
7872, 77orim12d 811 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( ( D  =  d  \/  C  =  c )  ->  ( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) ) )
7967, 78syl5bi 208 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( ( C  =  c  \/  D  =  d )  ->  ( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) ) )
8066, 79mpd 14 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  /\  (
( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) ) )  -> 
( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) )
8180an4s 799 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )  /\  ( ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) )  /\  (
( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) ) ) )  ->  ( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) )
8281exp32 588 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )  ->  ( ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) )  ->  (
( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  ->  ( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) ) ) )
8382rexlimdvv 2673 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )  ->  ( E. c  e.  ( EE `  N
) E. d  e.  ( EE `  N
) ( ( D 
Btwn  <. A ,  c
>.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  ->  ( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) ) )
8412, 83mpd 14 1  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )  ->  ( C  Btwn  <. A ,  D >.  \/  D  Btwn  <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   <.cop 3643   class class class wbr 4023   ` cfv 5255   NNcn 9746   EEcee 24516    Btwn cbtwn 24517  Cgrccgr 24518
This theorem is referenced by:  btwnconn1  24724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ee 24519  df-btwn 24520  df-cgr 24521  df-ofs 24606  df-ifs 24662  df-cgr3 24663  df-colinear 24664  df-fs 24665
  Copyright terms: Public domain W3C validator