Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem8 Unicode version

Theorem btwnconn1lem8 24789
Description: Lemma for btwnconn1 24796. Now, we introduce the last three points used in the construction:  P,  Q, and  R will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of  R P and  E d (Contributed by Scott Fenton, 8-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. R ,  P >.Cgr
<. E ,  d >.
)

Proof of Theorem btwnconn1lem8
StepHypRef Expression
1 simpr2l 1014 . . . 4  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  C  Btwn  <. d ,  R >. )
21ad2antll 709 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. d ,  R >. )
3 simpr1r 1013 . . . . . 6  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  <. C ,  P >.Cgr <. C ,  d
>. )
43ad2antll 709 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. C ,  P >.Cgr
<. C ,  d >.
)
5 simp11 985 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  N  e.  NN )
6 simp2l1 1054 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
7 simp31 991 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  P  e.  ( EE `  N
) )
8 simp2r1 1057 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  d  e.  ( EE `  N
) )
9 cgrcomlr 24693 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d
>. 
<-> 
<. P ,  C >.Cgr <.
d ,  C >. ) )
105, 6, 7, 6, 8, 9syl122anc 1191 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d >.  <->  <. P ,  C >.Cgr <. d ,  C >. ) )
11 cgrcom 24685 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. P ,  C >.Cgr <.
d ,  C >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
125, 7, 6, 8, 6, 11syl122anc 1191 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. P ,  C >.Cgr <.
d ,  C >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
1310, 12bitrd 244 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
1413adantr 451 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d
>. 
<-> 
<. d ,  C >.Cgr <. P ,  C >. ) )
154, 14mpbid 201 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  C >.Cgr
<. P ,  C >. )
16 simp33 993 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  R  e.  ( EE `  N
) )
17 simp2r3 1059 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
18 simp2l3 1056 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  c  e.  ( EE `  N
) )
19 simpr1l 1012 . . . . . . . 8  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  C  Btwn  <. c ,  P >. )
2019ad2antll 709 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. c ,  P >. )
215, 6, 18, 7, 20btwncomand 24710 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. P , 
c >. )
22 simprll 738 . . . . . . 7  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  ->  E  Btwn  <. C ,  c
>. )
2322adantl 452 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  E  Btwn  <. C , 
c >. )
24 btwnintr 24714 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. P ,  c
>.  /\  E  Btwn  <. C , 
c >. )  ->  C  Btwn  <. P ,  E >. ) )
255, 7, 6, 17, 18, 24syl122anc 1191 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. P , 
c >.  /\  E  Btwn  <. C ,  c >. )  ->  C  Btwn  <. P ,  E >. ) )
2625adantr 451 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( ( C 
Btwn  <. P ,  c
>.  /\  E  Btwn  <. C , 
c >. )  ->  C  Btwn  <. P ,  E >. ) )
2721, 23, 26mp2and 660 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. P ,  E >. )
28 simpr2r 1015 . . . . . 6  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  <. C ,  R >.Cgr <. C ,  E >. )
2928ad2antll 709 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. C ,  R >.Cgr
<. C ,  E >. )
305, 8, 6, 16, 7, 6, 17, 2, 27, 15, 29cgrextendand 24704 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  R >.Cgr
<. P ,  E >. )
31 brcgr3 24741 . . . . . 6  |-  ( ( N  e.  NN  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
325, 8, 6, 16, 7, 6, 17, 31syl133anc 1205 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
3332adantr 451 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
3415, 30, 29, 33mpbir3and 1135 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.
)
355, 8, 7cgrrflx2d 24679 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  <. d ,  P >.Cgr <. P ,  d
>. )
3635adantr 451 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  P >.Cgr
<. P ,  d >.
)
3736, 4jca 518 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. d ,  P >.Cgr <. P ,  d
>.  /\  <. C ,  P >.Cgr
<. C ,  d >.
) )
382, 34, 373jca 1132 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) ) )
39 simp1 955 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )
40 simp2l 981 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) ) )
41 simp2r 982 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )
4239, 40, 413jca 1132 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) ) )
43 simpl 443 . . . . 5  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )
44 simprl 732 . . . . 5  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )
4543, 44jca 518 . . . 4  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )
46 btwnconn1lem7 24788 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  (
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )  ->  C  =/=  d )
4742, 45, 46syl2an 463 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  =/=  d
)
4847necomd 2542 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  d  =/=  C
)
49 brofs2 24772 . . . . . 6  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  ( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >. 
<->  ( C  Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) ) ) )
5049anbi1d 685 . . . . 5  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >.  /\  d  =/=  C )  <->  ( ( C 
Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr
<. P ,  d >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
) )  /\  d  =/=  C ) ) )
51 5segofs 24701 . . . . 5  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >.  /\  d  =/=  C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5250, 51sylbird 226 . . . 4  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
535, 8, 6, 16, 7, 7, 6, 17, 8, 52syl333anc 1214 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5453adantr 451 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( ( ( C  Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5538, 48, 54mp2and 660 1  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. R ,  P >.Cgr
<. E ,  d >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696    =/= wne 2459   <.cop 3656   class class class wbr 4039   ` cfv 5271   NNcn 9762   EEcee 24588    Btwn cbtwn 24589  Cgrccgr 24590    OuterFiveSeg cofs 24677  Cgr3ccgr3 24731
This theorem is referenced by:  btwnconn1lem9  24790  btwnconn1lem10  24791  btwnconn1lem11  24792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ee 24591  df-btwn 24592  df-cgr 24593  df-ofs 24678  df-ifs 24734  df-cgr3 24735
  Copyright terms: Public domain W3C validator