MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnz Unicode version

Theorem btwnz 10206
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
Assertion
Ref Expression
btwnz  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Distinct variable groups:    x, A    y, A

Proof of Theorem btwnz
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 renegcl 9200 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
2 arch 10054 . . . 4  |-  ( -u A  e.  RR  ->  E. z  e.  NN  -u A  <  z )
31, 2syl 15 . . 3  |-  ( A  e.  RR  ->  E. z  e.  NN  -u A  <  z
)
4 nnre 9843 . . . . . . . 8  |-  ( z  e.  NN  ->  z  e.  RR )
5 ltnegcon1 9365 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( -u A  < 
z  <->  -u z  <  A
) )
65ex 423 . . . . . . . 8  |-  ( A  e.  RR  ->  (
z  e.  RR  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
74, 6syl5 28 . . . . . . 7  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
87pm5.32d 620 . . . . . 6  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  <-> 
( z  e.  NN  /\  -u z  <  A ) ) )
9 nnnegz 10119 . . . . . . 7  |-  ( z  e.  NN  ->  -u z  e.  ZZ )
10 breq1 4107 . . . . . . . 8  |-  ( x  =  -u z  ->  (
x  <  A  <->  -u z  < 
A ) )
1110rspcev 2960 . . . . . . 7  |-  ( (
-u z  e.  ZZ  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
129, 11sylan 457 . . . . . 6  |-  ( ( z  e.  NN  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
138, 12syl6bi 219 . . . . 5  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  ->  E. x  e.  ZZ  x  <  A ) )
1413exp3a 425 . . . 4  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  ->  E. x  e.  ZZ  x  <  A ) ) )
1514rexlimdv 2742 . . 3  |-  ( A  e.  RR  ->  ( E. z  e.  NN  -u A  <  z  ->  E. x  e.  ZZ  x  <  A ) )
163, 15mpd 14 . 2  |-  ( A  e.  RR  ->  E. x  e.  ZZ  x  <  A
)
17 arch 10054 . . 3  |-  ( A  e.  RR  ->  E. y  e.  NN  A  <  y
)
18 nnz 10137 . . . . 5  |-  ( y  e.  NN  ->  y  e.  ZZ )
1918anim1i 551 . . . 4  |-  ( ( y  e.  NN  /\  A  <  y )  -> 
( y  e.  ZZ  /\  A  <  y ) )
2019reximi2 2725 . . 3  |-  ( E. y  e.  NN  A  <  y  ->  E. y  e.  ZZ  A  <  y
)
2117, 20syl 15 . 2  |-  ( A  e.  RR  ->  E. y  e.  ZZ  A  <  y
)
2216, 21jca 518 1  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1710   E.wrex 2620   class class class wbr 4104   RRcr 8826    < clt 8957   -ucneg 9128   NNcn 9836   ZZcz 10116
This theorem is referenced by:  lbzbi  10398  rpnnen1lem1  10434  rpnnen1lem2  10435  rpnnen1lem3  10436  rpnnen1lem5  10438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-z 10117
  Copyright terms: Public domain W3C validator