MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1liplem1 Unicode version

Theorem c1liplem1 19359
Description: Lemma for c1lip1 19360. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
c1liplem1.a  |-  ( ph  ->  A  e.  RR )
c1liplem1.b  |-  ( ph  ->  B  e.  RR )
c1liplem1.le  |-  ( ph  ->  A  <_  B )
c1liplem1.f  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
c1liplem1.dv  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
c1liplem1.cn  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
c1liplem1.k  |-  K  =  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )
Assertion
Ref Expression
c1liplem1  |-  ( ph  ->  ( K  e.  RR  /\ 
A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) ) )
Distinct variable groups:    ph, x, y   
x, A, y    x, B, y    x, F, y
Allowed substitution hints:    K( x, y)

Proof of Theorem c1liplem1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c1liplem1.k . . 3  |-  K  =  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )
2 imassrn 5041 . . . . . 6  |-  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  C_  ran  abs
3 absf 11837 . . . . . . 7  |-  abs : CC
--> RR
4 frn 5411 . . . . . . 7  |-  ( abs
: CC --> RR  ->  ran 
abs  C_  RR )
53, 4ax-mp 8 . . . . . 6  |-  ran  abs  C_  RR
62, 5sstri 3201 . . . . 5  |-  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  C_  RR
76a1i 10 . . . 4  |-  ( ph  ->  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR )
8 dvf 19273 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
9 ffun 5407 . . . . . . . 8  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
108, 9ax-mp 8 . . . . . . 7  |-  Fun  ( RR  _D  F )
1110a1i 10 . . . . . 6  |-  ( ph  ->  Fun  ( RR  _D  F ) )
12 c1liplem1.dv . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
13 cncff 18413 . . . . . . . 8  |-  ( ( ( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( ( RR 
_D  F )  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
14 fdm 5409 . . . . . . . 8  |-  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) : ( A [,] B
) --> RR  ->  dom  ( ( RR  _D  F )  |`  ( A [,] B ) )  =  ( A [,] B ) )
1512, 13, 143syl 18 . . . . . . 7  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( A [,] B ) )  =  ( A [,] B ) )
16 ssdmres 4993 . . . . . . 7  |-  ( ( A [,] B ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( A [,] B
) )  =  ( A [,] B ) )
1715, 16sylibr 203 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  dom  ( RR 
_D  F ) )
18 c1liplem1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
1918rexrd 8897 . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
20 c1liplem1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
2120rexrd 8897 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
22 c1liplem1.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
23 lbicc2 10768 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
2419, 21, 22, 23syl3anc 1182 . . . . . 6  |-  ( ph  ->  A  e.  ( A [,] B ) )
25 funfvima2 5770 . . . . . . 7  |-  ( ( Fun  ( RR  _D  F )  /\  ( A [,] B )  C_  dom  ( RR  _D  F
) )  ->  ( A  e.  ( A [,] B )  ->  (
( RR  _D  F
) `  A )  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ) )
2625imp 418 . . . . . 6  |-  ( ( ( Fun  ( RR 
_D  F )  /\  ( A [,] B ) 
C_  dom  ( RR  _D  F ) )  /\  A  e.  ( A [,] B ) )  -> 
( ( RR  _D  F ) `  A
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
2711, 17, 24, 26syl21anc 1181 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F ) `  A
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
28 ffun 5407 . . . . . . 7  |-  ( abs
: CC --> RR  ->  Fun 
abs )
293, 28ax-mp 8 . . . . . 6  |-  Fun  abs
30 imassrn 5041 . . . . . . . 8  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  ran  ( RR  _D  F
)
31 frn 5411 . . . . . . . . 9  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  ran  ( RR  _D  F )  C_  CC )
328, 31ax-mp 8 . . . . . . . 8  |-  ran  ( RR  _D  F )  C_  CC
3330, 32sstri 3201 . . . . . . 7  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  CC
343fdmi 5410 . . . . . . 7  |-  dom  abs  =  CC
3533, 34sseqtr4i 3224 . . . . . 6  |-  ( ( RR  _D  F )
" ( A [,] B ) )  C_  dom  abs
36 funfvima2 5770 . . . . . 6  |-  ( ( Fun  abs  /\  (
( RR  _D  F
) " ( A [,] B ) ) 
C_  dom  abs )  ->  ( ( ( RR 
_D  F ) `  A )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  (
( RR  _D  F
) `  A )
)  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ) )
3729, 35, 36mp2an 653 . . . . 5  |-  ( ( ( RR  _D  F
) `  A )  e.  ( ( RR  _D  F ) " ( A [,] B ) )  ->  ( abs `  (
( RR  _D  F
) `  A )
)  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
38 ne0i 3474 . . . . 5  |-  ( ( abs `  ( ( RR  _D  F ) `
 A ) )  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  =/=  (/) )
3927, 37, 383syl 18 . . . 4  |-  ( ph  ->  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  =/=  (/) )
40 ax-resscn 8810 . . . . . . . 8  |-  RR  C_  CC
41 ssid 3210 . . . . . . . 8  |-  CC  C_  CC
42 cncfss 18419 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
4340, 41, 42mp2an 653 . . . . . . 7  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4443, 12sseldi 3191 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
45 cniccbdd 18837 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )  ->  E. a  e.  RR  A. x  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )
4618, 20, 44, 45syl3anc 1182 . . . . 5  |-  ( ph  ->  E. a  e.  RR  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  x ) )  <_ 
a )
47 fvelima 5590 . . . . . . . . . 10  |-  ( ( Fun  abs  /\  b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) )  ->  E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b )
4829, 47mpan 651 . . . . . . . . 9  |-  ( b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  ->  E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b )
49 fvelima 5590 . . . . . . . . . . . . . 14  |-  ( ( Fun  ( RR  _D  F )  /\  y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) )  ->  E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y )
5010, 49mpan 651 . . . . . . . . . . . . 13  |-  ( y  e.  ( ( RR 
_D  F ) "
( A [,] B
) )  ->  E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y )
51 fvres 5558 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  ( A [,] B )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 b )  =  ( ( RR  _D  F ) `  b
) )
5251adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 b )  =  ( ( RR  _D  F ) `  b
) )
5352fveq2d 5545 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  b
) )  =  ( abs `  ( ( RR  _D  F ) `
 b ) ) )
54 fveq2 5541 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  b  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x )  =  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  b ) )
5554fveq2d 5545 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  b  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  x
) )  =  ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  b ) ) )
5655breq1d 4049 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  (
( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  <->  ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  b ) )  <_  a )
)
5756rspccva 2896 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  b
) )  <_  a
)
5853, 57eqbrtrrd 4061 . . . . . . . . . . . . . . . 16  |-  ( ( A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  /\  b  e.  ( A [,] B
) )  ->  ( abs `  ( ( RR 
_D  F ) `  b ) )  <_ 
a )
5958adantll 694 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  b  e.  ( A [,] B ) )  -> 
( abs `  (
( RR  _D  F
) `  b )
)  <_  a )
60 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( ( ( RR  _D  F
) `  b )  =  y  ->  ( abs `  ( ( RR  _D  F ) `  b
) )  =  ( abs `  y ) )
6160breq1d 4049 . . . . . . . . . . . . . . 15  |-  ( ( ( RR  _D  F
) `  b )  =  y  ->  ( ( abs `  ( ( RR  _D  F ) `
 b ) )  <_  a  <->  ( abs `  y )  <_  a
) )
6259, 61syl5ibcom 211 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  b  e.  ( A [,] B ) )  -> 
( ( ( RR 
_D  F ) `  b )  =  y  ->  ( abs `  y
)  <_  a )
)
6362rexlimdva 2680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( E. b  e.  ( A [,] B
) ( ( RR 
_D  F ) `  b )  =  y  ->  ( abs `  y
)  <_  a )
)
6450, 63syl5 28 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( y  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  y
)  <_  a )
)
6564imp 418 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  y  e.  ( ( RR  _D  F ) "
( A [,] B
) ) )  -> 
( abs `  y
)  <_  a )
66 breq1 4042 . . . . . . . . . . 11  |-  ( ( abs `  y )  =  b  ->  (
( abs `  y
)  <_  a  <->  b  <_  a ) )
6765, 66syl5ibcom 211 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a )  /\  y  e.  ( ( RR  _D  F ) "
( A [,] B
) ) )  -> 
( ( abs `  y
)  =  b  -> 
b  <_  a )
)
6867rexlimdva 2680 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( E. y  e.  ( ( RR  _D  F ) " ( A [,] B ) ) ( abs `  y
)  =  b  -> 
b  <_  a )
)
6948, 68syl5 28 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  ( b  e.  ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) )  ->  b  <_  a
) )
7069ralrimiv 2638 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a )  ->  A. b  e.  ( abs " ( ( RR  _D  F )
" ( A [,] B ) ) ) b  <_  a )
7170ex 423 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. x  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  x ) )  <_  a  ->  A. b  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) b  <_  a ) )
7271reximdva 2668 . . . . 5  |-  ( ph  ->  ( E. a  e.  RR  A. x  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 x ) )  <_  a  ->  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
) )
7346, 72mpd 14 . . . 4  |-  ( ph  ->  E. a  e.  RR  A. b  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) b  <_  a )
74 suprcl 9730 . . . 4  |-  ( ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR  /\  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  =/=  (/)  /\  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)  ->  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  )  e.  RR )
757, 39, 73, 74syl3anc 1182 . . 3  |-  ( ph  ->  sup ( ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ,  RR ,  <  )  e.  RR )
761, 75syl5eqel 2380 . 2  |-  ( ph  ->  K  e.  RR )
77 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  ( A [,] B ) )
78 fvres 5558 . . . . . . . . . . 11  |-  ( y  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 y )  =  ( F `  y
) )
7977, 78syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  =  ( F `  y ) )
80 c1liplem1.cn . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
81 cncff 18413 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
8280, 81syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
8382ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( A [,] B
) ) : ( A [,] B ) --> RR )
8483, 77ffvelrnd 5682 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  e.  RR )
8584recnd 8877 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  y )  e.  CC )
8679, 85eqeltrrd 2371 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  y )  e.  CC )
87 simplrl 736 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  ( A [,] B ) )
88 fvres 5558 . . . . . . . . . . 11  |-  ( x  e.  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) ) `
 x )  =  ( F `  x
) )
8987, 88syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  =  ( F `  x ) )
9083, 87ffvelrnd 5682 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  e.  RR )
9190recnd 8877 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) ) `  x )  e.  CC )
9289, 91eqeltrrd 2371 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  x )  e.  CC )
9386, 92subcld 9173 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F `  y )  -  ( F `  x ) )  e.  CC )
94 iccssre 10747 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
9518, 20, 94syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( A [,] B
)  C_  RR )
9695ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( A [,] B )  C_  RR )
9796, 77sseldd 3194 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  RR )
9896, 87sseldd 3194 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  RR )
9997, 98resubcld 9227 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  RR )
10099recnd 8877 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  CC )
101 simpr 447 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  <  y )
102 difrp 10403 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  <->  ( y  -  x )  e.  RR+ ) )
10398, 97, 102syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x  <  y  <->  ( y  -  x )  e.  RR+ ) )
104101, 103mpbid 201 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  e.  RR+ )
105104rpne0d 10411 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( y  -  x )  =/=  0
)
10693, 100, 105absdivd 11953 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  =  ( ( abs `  ( ( F `  y )  -  ( F `  x ) ) )  /  ( abs `  (
y  -  x ) ) ) )
1076a1i 10 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  C_  RR )
10839ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs " ( ( RR  _D  F ) " ( A [,] B ) ) )  =/=  (/) )
10973ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)
11029a1i 10 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  Fun  abs )
11193, 100, 105divcld 9552 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e.  CC )
112111, 34syl6eleqr 2387 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e. 
dom  abs )
11398rexrd 8897 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  RR* )
11497rexrd 8897 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  RR* )
11598, 97, 101ltled 8983 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  <_  y )
116 ubicc2 10769 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  y  e.  ( x [,] y
) )
117113, 114, 115, 116syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  y  e.  ( x [,] y
) )
118 fvres 5558 . . . . . . . . . . . . . 14  |-  ( y  e.  ( x [,] y )  ->  (
( F  |`  (
x [,] y ) ) `  y )  =  ( F `  y ) )
119117, 118syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( x [,] y ) ) `  y )  =  ( F `  y ) )
120 lbicc2 10768 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  x  <_ 
y )  ->  x  e.  ( x [,] y
) )
121113, 114, 115, 120syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  x  e.  ( x [,] y
) )
122 fvres 5558 . . . . . . . . . . . . . 14  |-  ( x  e.  ( x [,] y )  ->  (
( F  |`  (
x [,] y ) ) `  x )  =  ( F `  x ) )
123121, 122syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( x [,] y ) ) `  x )  =  ( F `  x ) )
124119, 123oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F  |`  (
x [,] y ) ) `  y )  -  ( ( F  |`  ( x [,] y
) ) `  x
) )  =  ( ( F `  y
)  -  ( F `
 x ) ) )
125124oveq1d 5889 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  =  ( ( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )
126 iccss2 10736 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) )  -> 
( x [,] y
)  C_  ( A [,] B ) )
127126ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x [,] y )  C_  ( A [,] B ) )
128 resabs1 5000 . . . . . . . . . . . . . . 15  |-  ( ( x [,] y ) 
C_  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  =  ( F  |`  ( x [,] y ) ) )
129127, 128syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  =  ( F  |`  ( x [,] y ) ) )
13080ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> RR ) )
131 rescncf 18417 . . . . . . . . . . . . . . 15  |-  ( ( x [,] y ) 
C_  ( A [,] B )  ->  (
( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) ) )
132127, 130, 131sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( F  |`  ( A [,] B ) )  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) )
133129, 132eqeltrrd 2371 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F  |`  ( x [,] y
) )  e.  ( ( x [,] y
) -cn-> RR ) )
13440a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  RR  C_  CC )
135 c1liplem1.f . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
136135ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  F  e.  ( CC  ^pm  RR ) )
137 cnex 8834 . . . . . . . . . . . . . . . . . . . 20  |-  CC  e.  _V
138 reex 8844 . . . . . . . . . . . . . . . . . . . 20  |-  RR  e.  _V
139137, 138elpm2 6815 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
140139simplbi 446 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( CC  ^pm  RR )  ->  F : dom  F --> CC )
141136, 140syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  F : dom  F --> CC )
142139simprbi 450 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
143136, 142syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  F  C_  RR )
144 iccssre 10747 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x [,] y
)  C_  RR )
14598, 97, 144syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x [,] y )  C_  RR )
146 eqid 2296 . . . . . . . . . . . . . . . . . 18  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
147146tgioo2 18325 . . . . . . . . . . . . . . . . . 18  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
148146, 147dvres 19277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( RR  C_  CC  /\  F : dom  F --> CC )  /\  ( dom  F  C_  RR  /\  (
x [,] y ) 
C_  RR ) )  ->  ( RR  _D  ( F  |`  ( x [,] y ) ) )  =  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) ) ) )
149134, 141, 143, 145, 148syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( RR  _D  ( F  |`  (
x [,] y ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( x [,] y ) ) ) )
150 iccntr 18342 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) )  =  ( x (,) y
) )
15198, 97, 150syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  (
x [,] y ) )  =  ( x (,) y ) )
152151reseq2d 4971 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) ) )  =  ( ( RR 
_D  F )  |`  ( x (,) y
) ) )
153149, 152eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( RR  _D  ( F  |`  (
x [,] y ) ) )  =  ( ( RR  _D  F
)  |`  ( x (,) y ) ) )
154153dmeqd 4897 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( RR 
_D  ( F  |`  ( x [,] y
) ) )  =  dom  ( ( RR 
_D  F )  |`  ( x (,) y
) ) )
155 ioossicc 10751 . . . . . . . . . . . . . . . . 17  |-  ( x (,) y )  C_  ( x [,] y
)
156155, 127syl5ss 3203 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x (,) y )  C_  ( A [,] B ) )
15717ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( A [,] B )  C_  dom  ( RR  _D  F
) )
158156, 157sstrd 3202 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( x (,) y )  C_  dom  ( RR  _D  F
) )
159 ssdmres 4993 . . . . . . . . . . . . . . 15  |-  ( ( x (,) y ) 
C_  dom  ( RR  _D  F )  <->  dom  ( ( RR  _D  F )  |`  ( x (,) y
) )  =  ( x (,) y ) )
160158, 159sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( ( RR  _D  F )  |`  ( x (,) y
) )  =  ( x (,) y ) )
161154, 160eqtrd 2328 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  dom  ( RR 
_D  ( F  |`  ( x [,] y
) ) )  =  ( x (,) y
) )
16298, 97, 101, 133, 161mvth 19355 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  E. a  e.  ( x (,) y
) ( ( RR 
_D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) ) )
163153fveq1d 5543 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( RR  _D  F )  |`  (
x (,) y ) ) `  a ) )
164163adantrr 697 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  =  ( ( ( RR  _D  F )  |`  ( x (,) y
) ) `  a
) )
165 fvres 5558 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( x (,) y )  ->  (
( ( RR  _D  F )  |`  (
x (,) y ) ) `  a )  =  ( ( RR 
_D  F ) `  a ) )
166165ad2antll 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( ( RR 
_D  F )  |`  ( x (,) y
) ) `  a
)  =  ( ( RR  _D  F ) `
 a ) )
167164, 166eqtrd 2328 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  =  ( ( RR 
_D  F ) `  a ) )
16810a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  ->  Fun  ( RR  _D  F
) )
16917ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( A [,] B
)  C_  dom  ( RR 
_D  F ) )
170156sseld 3192 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( a  e.  ( x (,) y
)  ->  a  e.  ( A [,] B ) ) )
171170impr 602 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
a  e.  ( A [,] B ) )
172 funfvima2 5770 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  ( RR  _D  F )  /\  ( A [,] B )  C_  dom  ( RR  _D  F
) )  ->  (
a  e.  ( A [,] B )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) ) )
173172imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Fun  ( RR 
_D  F )  /\  ( A [,] B ) 
C_  dom  ( RR  _D  F ) )  /\  a  e.  ( A [,] B ) )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
174168, 169, 171, 173syl21anc 1181 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  F ) `  a
)  e.  ( ( RR  _D  F )
" ( A [,] B ) ) )
175167, 174eqeltrd 2370 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `  a )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) )
176 eleq1 2356 . . . . . . . . . . . . . . 15  |-  ( ( ( RR  _D  ( F  |`  ( x [,] y ) ) ) `
 a )  =  ( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  ->  ( ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  <-> 
( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
177175, 176syl5ibcom 211 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  ( x  < 
y  /\  a  e.  ( x (,) y
) ) )  -> 
( ( ( RR 
_D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  ->  (
( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) ) )
178177expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( a  e.  ( x (,) y
)  ->  ( (
( RR  _D  ( F  |`  ( x [,] y ) ) ) `
 a )  =  ( ( ( ( F  |`  ( x [,] y ) ) `  y )  -  (
( F  |`  (
x [,] y ) ) `  x ) )  /  ( y  -  x ) )  ->  ( ( ( ( F  |`  (
x [,] y ) ) `  y )  -  ( ( F  |`  ( x [,] y
) ) `  x
) )  /  (
y  -  x ) )  e.  ( ( RR  _D  F )
" ( A [,] B ) ) ) ) )
179178rexlimdv 2679 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( E. a  e.  ( x (,) y ) ( ( RR  _D  ( F  |`  ( x [,] y
) ) ) `  a )  =  ( ( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  ->  (
( ( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) ) )
180162, 179mpd 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( ( F  |`  ( x [,] y
) ) `  y
)  -  ( ( F  |`  ( x [,] y ) ) `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) ) )
181125, 180eqeltrrd 2371 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( F `  y
)  -  ( F `
 x ) )  /  ( y  -  x ) )  e.  ( ( RR  _D  F ) " ( A [,] B ) ) )
182 funfvima 5769 . . . . . . . . . . 11  |-  ( ( Fun  abs  /\  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) )  e.  dom  abs )  ->  ( ( ( ( F `  y )  -  ( F `  x ) )  / 
( y  -  x
) )  e.  ( ( RR  _D  F
) " ( A [,] B ) )  ->  ( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) ) )
183182imp 418 . . . . . . . . . 10  |-  ( ( ( Fun  abs  /\  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) )  e.  dom  abs )  /\  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) )  e.  ( ( RR 
_D  F ) "
( A [,] B
) ) )  -> 
( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
184110, 112, 181, 183syl21anc 1181 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )
185 suprub 9731 . . . . . . . . 9  |-  ( ( ( ( abs " (
( RR  _D  F
) " ( A [,] B ) ) )  C_  RR  /\  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) )  =/=  (/)  /\  E. a  e.  RR  A. b  e.  ( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) b  <_  a
)  /\  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  e.  ( abs " ( ( RR 
_D  F ) "
( A [,] B
) ) ) )  ->  ( abs `  (
( ( F `  y )  -  ( F `  x )
)  /  ( y  -  x ) ) )  <_  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  ) )
186107, 108, 109, 184, 185syl31anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  <_  sup (
( abs " (
( RR  _D  F
) " ( A [,] B ) ) ) ,  RR ,  <  ) )
187186, 1syl6breqr 4079 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( ( F `
 y )  -  ( F `  x ) )  /  ( y  -  x ) ) )  <_  K )
188106, 187eqbrtrrd 4061 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( abs `  ( ( F `
 y )  -  ( F `  x ) ) )  /  ( abs `  ( y  -  x ) ) )  <_  K )
18993abscld 11934 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  e.  RR )
19076ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  K  e.  RR )
191100, 105absrpcld 11946 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( y  -  x
) )  e.  RR+ )
192189, 190, 191ledivmuld 10455 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( (
( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  /  ( abs `  ( y  -  x
) ) )  <_  K 
<->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( ( abs `  ( y  -  x ) )  x.  K ) ) )
193188, 192mpbid 201 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  (
( abs `  (
y  -  x ) )  x.  K ) )
194191rpcnd 10408 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( y  -  x
) )  e.  CC )
195190recnd 8877 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  K  e.  CC )
196194, 195mulcomd 8872 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( ( abs `  ( y  -  x ) )  x.  K )  =  ( K  x.  ( abs `  ( y  -  x
) ) ) )
197193, 196breqtrd 4063 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( abs `  ( ( F `  y )  -  ( F `  x )
) )  <_  ( K  x.  ( abs `  ( y  -  x
) ) ) )
198197ex 423 . . 3  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  ->  (
x  <  y  ->  ( abs `  ( ( F `  y )  -  ( F `  x ) ) )  <_  ( K  x.  ( abs `  ( y  -  x ) ) ) ) )
199198ralrimivva 2648 . 2  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) )
20076, 199jca 518 1  |-  ( ph  ->  ( K  e.  RR  /\ 
A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( abs `  (
( F `  y
)  -  ( F `
 x ) ) )  <_  ( K  x.  ( abs `  (
y  -  x ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   class class class wbr 4039   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   supcsup 7209   CCcc 8751   RRcr 8752    x. cmul 8758   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   RR+crp 10370   (,)cioo 10672   [,]cicc 10675   abscabs 11735   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   intcnt 16770   -cn->ccncf 18396    _D cdv 19229
This theorem is referenced by:  c1lip1  19360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator