MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadrot Unicode version

Theorem cadrot 1387
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadrot  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ps ,  ch ,  ph ) )

Proof of Theorem cadrot
StepHypRef Expression
1 cadcoma 1385 . 2  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ps ,  ph ,  ch ) )
2 cadcomb 1386 . 2  |-  (cadd ( ps ,  ph ,  ch )  <-> cadd ( ps ,  ch ,  ph ) )
31, 2bitri 240 1  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ps ,  ch ,  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176  caddwcad 1369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-xor 1296  df-cad 1371
  Copyright terms: Public domain W3C validator