MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadrot Structured version   Unicode version

Theorem cadrot 1407
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadrot  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ps ,  ch ,  ph ) )

Proof of Theorem cadrot
StepHypRef Expression
1 cadcoma 1405 . 2  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ps ,  ph ,  ch ) )
2 cadcomb 1406 . 2  |-  (cadd ( ps ,  ph ,  ch )  <-> cadd ( ps ,  ch ,  ph ) )
31, 2bitri 242 1  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ps ,  ch ,  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178  caddwcad 1389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-xor 1315  df-cad 1391
  Copyright terms: Public domain W3C validator