MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadtru Structured version   Unicode version

Theorem cadtru 1410
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadtru  |- cadd (  T.  ,  T.  ,  ph )

Proof of Theorem cadtru
StepHypRef Expression
1 tru 1330 . 2  |-  T.
2 cad11 1408 . 2  |-  ( (  T.  /\  T.  )  -> cadd (  T.  ,  T.  ,  ph ) )
31, 1, 2mp2an 654 1  |- cadd (  T.  ,  T.  ,  ph )
Colors of variables: wff set class
Syntax hints:    T. wtru 1325  caddwcad 1388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-cad 1390
  Copyright terms: Public domain W3C validator