Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  camestres Structured version   Unicode version

Theorem camestres 2387
 Description: "Camestres", one of the syllogisms of Aristotelian logic. All is , and no is , therefore no is . (In Aristotelian notation, AEE-2: PaM and SeM therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
camestres.maj
camestres.min
Assertion
Ref Expression
camestres

Proof of Theorem camestres
StepHypRef Expression
1 camestres.min . . . 4
21spi 1770 . . 3
3 camestres.maj . . . 4
43spi 1770 . . 3
52, 4nsyl 116 . 2
65ax-gen 1556 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-ex 1552
 Copyright terms: Public domain W3C validator