MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth Unicode version

Theorem canth 6294
Description: No set  A is equinumerous to its power set (Cantor's theorem), i.e. no function can map  A it onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 7014. Note that  A must be a set: this theorem does not hold when  A is too large to be a set; see ncanth 6295 for a counterexample. (Use nex 1542 if you want the form  -.  E. f f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypothesis
Ref Expression
canth.1  |-  A  e. 
_V
Assertion
Ref Expression
canth  |-  -.  F : A -onto-> ~P A

Proof of Theorem canth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3258 . . . 4  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  C_  A
2 canth.1 . . . . 5  |-  A  e. 
_V
32elpw2 4175 . . . 4  |-  ( { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ~P A  <->  { x  e.  A  |  -.  x  e.  ( F `  x ) }  C_  A )
41, 3mpbir 200 . . 3  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ~P A
5 forn 5454 . . 3  |-  ( F : A -onto-> ~P A  ->  ran  F  =  ~P A )
64, 5syl5eleqr 2370 . 2  |-  ( F : A -onto-> ~P A  ->  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F
)
7 id 19 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
8 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
97, 8eleq12d 2351 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( F `
 x )  <->  y  e.  ( F `  y ) ) )
109notbid 285 . . . . . . . 8  |-  ( x  =  y  ->  ( -.  x  e.  ( F `  x )  <->  -.  y  e.  ( F `
 y ) ) )
1110elrab 2923 . . . . . . 7  |-  ( y  e.  { x  e.  A  |  -.  x  e.  ( F `  x
) }  <->  ( y  e.  A  /\  -.  y  e.  ( F `  y
) ) )
1211baibr 872 . . . . . 6  |-  ( y  e.  A  ->  ( -.  y  e.  ( F `  y )  <->  y  e.  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
13 nbbn 347 . . . . . 6  |-  ( ( -.  y  e.  ( F `  y )  <-> 
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } )  <->  -.  ( y  e.  ( F `  y )  <-> 
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
1412, 13sylib 188 . . . . 5  |-  ( y  e.  A  ->  -.  ( y  e.  ( F `  y )  <-> 
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
15 eleq2 2344 . . . . 5  |-  ( ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) }  ->  (
y  e.  ( F `
 y )  <->  y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
1614, 15nsyl 113 . . . 4  |-  ( y  e.  A  ->  -.  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1716nrex 2645 . . 3  |-  -.  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x ) }
18 fofn 5453 . . . 4  |-  ( F : A -onto-> ~P A  ->  F  Fn  A )
19 fvelrnb 5570 . . . 4  |-  ( F  Fn  A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
2018, 19syl 15 . . 3  |-  ( F : A -onto-> ~P A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
2117, 20mtbiri 294 . 2  |-  ( F : A -onto-> ~P A  ->  -.  { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F )
226, 21pm2.65i 165 1  |-  -.  F : A -onto-> ~P A
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   ran crn 4690    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255
This theorem is referenced by:  canth2  7014  canthwdom  7293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263
  Copyright terms: Public domain W3C validator