MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval Structured version   Unicode version

Theorem cantnffval 7618
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnffval.1  |-  S  =  { g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }
cantnffval.2  |-  ( ph  ->  A  e.  On )
cantnffval.3  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
cantnffval  |-  ( ph  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
Distinct variable groups:    f, g, h, k, z, A    B, f, g, h, k, z    S, f
Allowed substitution hints:    ph( z, f, g, h, k)    S( z, g, h, k)

Proof of Theorem cantnffval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.2 . 2  |-  ( ph  ->  A  e.  On )
2 cantnffval.3 . 2  |-  ( ph  ->  B  e.  On )
3 oveq12 6090 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  ^m  y
)  =  ( A  ^m  B ) )
4 rabeq 2950 . . . . . 6  |-  ( ( x  ^m  y )  =  ( A  ^m  B )  ->  { g  e.  ( x  ^m  y )  |  ( `' g " ( _V  \  1o ) )  e.  Fin }  =  { g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin } )
53, 4syl 16 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  { g  e.  ( x  ^m  y )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }  =  { g  e.  ( A  ^m  B
)  |  ( `' g " ( _V 
\  1o ) )  e.  Fin } )
6 cantnffval.1 . . . . 5  |-  S  =  { g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }
75, 6syl6eqr 2486 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  { g  e.  ( x  ^m  y )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }  =  S )
8 simp1l 981 . . . . . . . . . . 11  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  x  =  A )
98oveq1d 6096 . . . . . . . . . 10  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  ( x  ^o  ( h `  k ) )  =  ( A  ^o  (
h `  k )
) )
109oveq1d 6096 . . . . . . . . 9  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  =  ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) ) )
1110oveq1d 6096 . . . . . . . 8  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  ( ( ( x  ^o  (
h `  k )
)  .o  ( f `
 ( h `  k ) ) )  +o  z )  =  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )
1211mpt2eq3dva 6138 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) ) )
13 eqid 2436 . . . . . . 7  |-  (/)  =  (/)
14 seqomeq12 6711 . . . . . . 7  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) )
1512, 13, 14sylancl 644 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  -> seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) )
1615fveq1d 5730 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  =  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  h ) )
1716csbeq2dv 3276 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  =  [_OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )
187, 17mpteq12dv 4287 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( f  e.  {
g  e.  ( x  ^m  y )  |  ( `' g "
( _V  \  1o ) )  e.  Fin } 
|->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  ( f  e.  S  |->  [_OrdIso (  _E  ,  ( `' f " ( _V 
\  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
19 df-cnf 7617 . . 3  |- CNF  =  ( x  e.  On , 
y  e.  On  |->  ( f  e.  { g  e.  ( x  ^m  y )  |  ( `' g " ( _V  \  1o ) )  e.  Fin }  |->  [_OrdIso (  _E  ,  ( `' f " ( _V 
\  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
20 ovex 6106 . . . . . 6  |-  ( A  ^m  B )  e. 
_V
2120rabex 4354 . . . . 5  |-  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin }  e.  _V
226, 21eqeltri 2506 . . . 4  |-  S  e. 
_V
2322mptex 5966 . . 3  |-  ( f  e.  S  |->  [_OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  e.  _V
2418, 19, 23ovmpt2a 6204 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
251, 2, 24syl2anc 643 1  |-  ( ph  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2709   _Vcvv 2956   [_csb 3251    \ cdif 3317   (/)c0 3628    e. cmpt 4266    _E cep 4492   Oncon0 4581   `'ccnv 4877   dom cdm 4878   "cima 4881   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083  seq𝜔cseqom 6704   1oc1o 6717    +o coa 6721    .o comu 6722    ^o coe 6723    ^m cmap 7018   Fincfn 7109  OrdIsocoi 7478   CNF ccnf 7616
This theorem is referenced by:  cantnfdm  7619  cantnfval  7623  cantnff  7629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-seqom 6705  df-cnf 7617
  Copyright terms: Public domain W3C validator