MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval2 Unicode version

Theorem cantnffval2 7397
Description: An alternative definition of df-cnf 7363 which relies on cantnf 7395. (Note that although the use of  S seems self-referential, one can use cantnfdm 7365 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
Assertion
Ref Expression
cantnffval2  |-  ( ph  ->  ( A CNF  B )  =  `'OrdIso ( T ,  S
) )
Distinct variable groups:    x, w, y, z, B    w, A, x, y, z    x, S, y, z    ph, x, y, z
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)

Proof of Theorem cantnffval2
StepHypRef Expression
1 cantnfs.1 . . . . 5  |-  S  =  dom  ( A CNF  B
)
2 cantnfs.2 . . . . 5  |-  ( ph  ->  A  e.  On )
3 cantnfs.3 . . . . 5  |-  ( ph  ->  B  e.  On )
4 oemapval.t . . . . 5  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
51, 2, 3, 4cantnf 7395 . . . 4  |-  ( ph  ->  ( A CNF  B ) 
Isom  T ,  _E  ( S ,  ( A  ^o  B ) ) )
6 isof1o 5822 . . . 4  |-  ( ( A CNF  B )  Isom  T ,  _E  ( S ,  ( A  ^o  B ) )  -> 
( A CNF  B ) : S -1-1-onto-> ( A  ^o  B
) )
7 f1orel 5475 . . . 4  |-  ( ( A CNF  B ) : S -1-1-onto-> ( A  ^o  B
)  ->  Rel  ( A CNF 
B ) )
85, 6, 73syl 18 . . 3  |-  ( ph  ->  Rel  ( A CNF  B
) )
9 dfrel2 5124 . . 3  |-  ( Rel  ( A CNF  B )  <->  `' `' ( A CNF  B
)  =  ( A CNF 
B ) )
108, 9sylib 188 . 2  |-  ( ph  ->  `' `' ( A CNF  B
)  =  ( A CNF 
B ) )
11 oecl 6536 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
122, 3, 11syl2anc 642 . . . . . 6  |-  ( ph  ->  ( A  ^o  B
)  e.  On )
13 eloni 4402 . . . . . 6  |-  ( ( A  ^o  B )  e.  On  ->  Ord  ( A  ^o  B ) )
1412, 13syl 15 . . . . 5  |-  ( ph  ->  Ord  ( A  ^o  B ) )
15 isocnv 5827 . . . . . 6  |-  ( ( A CNF  B )  Isom  T ,  _E  ( S ,  ( A  ^o  B ) )  ->  `' ( A CNF  B
)  Isom  _E  ,  T  ( ( A  ^o  B ) ,  S
) )
165, 15syl 15 . . . . 5  |-  ( ph  ->  `' ( A CNF  B
)  Isom  _E  ,  T  ( ( A  ^o  B ) ,  S
) )
171, 2, 3, 4oemapwe 7396 . . . . . . 7  |-  ( ph  ->  ( T  We  S  /\  dom OrdIso ( T ,  S )  =  ( A  ^o  B ) ) )
1817simpld 445 . . . . . 6  |-  ( ph  ->  T  We  S )
19 ovex 5883 . . . . . . . . 9  |-  ( A CNF 
B )  e.  _V
2019dmex 4941 . . . . . . . 8  |-  dom  ( A CNF  B )  e.  _V
211, 20eqeltri 2353 . . . . . . 7  |-  S  e. 
_V
22 exse 4357 . . . . . . 7  |-  ( S  e.  _V  ->  T Se  S )
2321, 22ax-mp 8 . . . . . 6  |-  T Se  S
24 eqid 2283 . . . . . . 7  |- OrdIso ( T ,  S )  = OrdIso
( T ,  S
)
2524oieu 7254 . . . . . 6  |-  ( ( T  We  S  /\  T Se  S )  ->  (
( Ord  ( A  ^o  B )  /\  `' ( A CNF  B )  Isom  _E  ,  T  ( ( A  ^o  B
) ,  S ) )  <->  ( ( A  ^o  B )  =  dom OrdIso ( T ,  S )  /\  `' ( A CNF  B )  = OrdIso ( T ,  S
) ) ) )
2618, 23, 25sylancl 643 . . . . 5  |-  ( ph  ->  ( ( Ord  ( A  ^o  B )  /\  `' ( A CNF  B
)  Isom  _E  ,  T  ( ( A  ^o  B ) ,  S
) )  <->  ( ( A  ^o  B )  =  dom OrdIso ( T ,  S )  /\  `' ( A CNF  B )  = OrdIso ( T ,  S
) ) ) )
2714, 16, 26mpbi2and 887 . . . 4  |-  ( ph  ->  ( ( A  ^o  B )  =  dom OrdIso ( T ,  S )  /\  `' ( A CNF 
B )  = OrdIso ( T ,  S )
) )
2827simprd 449 . . 3  |-  ( ph  ->  `' ( A CNF  B
)  = OrdIso ( T ,  S ) )
2928cnveqd 4857 . 2  |-  ( ph  ->  `' `' ( A CNF  B
)  =  `'OrdIso ( T ,  S )
)
3010, 29eqtr3d 2317 1  |-  ( ph  ->  ( A CNF  B )  =  `'OrdIso ( T ,  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   {copab 4076    _E cep 4303   Se wse 4350    We wwe 4351   Ord word 4391   Oncon0 4392   `'ccnv 4688   dom cdm 4689   Rel wrel 4694   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256  (class class class)co 5858    ^o coe 6478  OrdIsocoi 7224   CNF ccnf 7362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-oexp 6485  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-cnf 7363
  Copyright terms: Public domain W3C validator