MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Unicode version

Theorem cantnfle 7619
Description: A lower bound on the CNF function. Since  ( ( A CNF 
B ) `  F
) is defined as the sum of  ( A  ^o  x )  .o  ( F `  x ) over all  x in the support of  F, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all  C  e.  B instead of just those  C in the support). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
cantnfval.3  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cantnfval.4  |-  ( ph  ->  F  e.  S )
cantnfval.5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
cantnfle.5  |-  ( ph  ->  C  e.  B )
Assertion
Ref Expression
cantnfle  |-  ( ph  ->  ( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( ( A CNF  B ) `  F
) )
Distinct variable groups:    z, k, B    z, C    A, k,
z    k, F, z    S, k, z    k, G, z    ph, k, z
Allowed substitution hints:    C( k)    H( z, k)

Proof of Theorem cantnfle
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6082 . . 3  |-  ( ( F `  C )  =  (/)  ->  ( ( A  ^o  C )  .o  ( F `  C ) )  =  ( ( A  ^o  C )  .o  (/) ) )
21sseq1d 3368 . 2  |-  ( ( F `  C )  =  (/)  ->  ( ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( ( A CNF 
B ) `  F
)  <->  ( ( A  ^o  C )  .o  (/) )  C_  ( ( A CNF  B ) `  F ) ) )
3 cantnfs.3 . . . . . . . . . 10  |-  ( ph  ->  B  e.  On )
4 cnvimass 5217 . . . . . . . . . . 11  |-  ( `' F " ( _V 
\  1o ) ) 
C_  dom  F
5 cantnfval.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  S )
6 cantnfs.1 . . . . . . . . . . . . . . 15  |-  S  =  dom  ( A CNF  B
)
7 cantnfs.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  On )
86, 7, 3cantnfs 7614 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )
95, 8mpbid 202 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F : B --> A  /\  ( `' F " ( _V  \  1o ) )  e.  Fin ) )
109simpld 446 . . . . . . . . . . . 12  |-  ( ph  ->  F : B --> A )
11 fdm 5588 . . . . . . . . . . . 12  |-  ( F : B --> A  ->  dom  F  =  B )
1210, 11syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  B )
134, 12syl5sseq 3389 . . . . . . . . . 10  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  C_  B
)
143, 13ssexd 4343 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  e.  _V )
15 cantnfval.3 . . . . . . . . . . 11  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
166, 7, 3, 15, 5cantnfcl 7615 . . . . . . . . . 10  |-  ( ph  ->  (  _E  We  ( `' F " ( _V 
\  1o ) )  /\  dom  G  e. 
om ) )
1716simpld 446 . . . . . . . . 9  |-  ( ph  ->  _E  We  ( `' F " ( _V 
\  1o ) ) )
1815oiiso 7499 . . . . . . . . 9  |-  ( ( ( `' F "
( _V  \  1o ) )  e.  _V  /\  _E  We  ( `' F " ( _V 
\  1o ) ) )  ->  G  Isom  _E  ,  _E  ( dom 
G ,  ( `' F " ( _V 
\  1o ) ) ) )
1914, 17, 18syl2anc 643 . . . . . . . 8  |-  ( ph  ->  G  Isom  _E  ,  _E  ( dom  G ,  ( `' F " ( _V 
\  1o ) ) ) )
20 isof1o 6038 . . . . . . . 8  |-  ( G 
Isom  _E  ,  _E  ( dom  G ,  ( `' F " ( _V 
\  1o ) ) )  ->  G : dom  G -1-1-onto-> ( `' F "
( _V  \  1o ) ) )
2119, 20syl 16 . . . . . . 7  |-  ( ph  ->  G : dom  G -1-1-onto-> ( `' F " ( _V 
\  1o ) ) )
2221adantr 452 . . . . . 6  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  G : dom  G -1-1-onto-> ( `' F " ( _V 
\  1o ) ) )
23 f1ocnv 5680 . . . . . 6  |-  ( G : dom  G -1-1-onto-> ( `' F " ( _V 
\  1o ) )  ->  `' G :
( `' F "
( _V  \  1o ) ) -1-1-onto-> dom  G )
24 f1of 5667 . . . . . 6  |-  ( `' G : ( `' F " ( _V 
\  1o ) ) -1-1-onto-> dom 
G  ->  `' G : ( `' F " ( _V  \  1o ) ) --> dom  G
)
2522, 23, 243syl 19 . . . . 5  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  `' G : ( `' F " ( _V 
\  1o ) ) --> dom  G )
26 cantnfle.5 . . . . . . 7  |-  ( ph  ->  C  e.  B )
2726adantr 452 . . . . . 6  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  C  e.  B )
28 simpr 448 . . . . . . 7  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( F `  C
)  =/=  (/) )
29 fvex 5735 . . . . . . . 8  |-  ( F `
 C )  e. 
_V
30 dif1o 6737 . . . . . . . 8  |-  ( ( F `  C )  e.  ( _V  \  1o )  <->  ( ( F `
 C )  e. 
_V  /\  ( F `  C )  =/=  (/) ) )
3129, 30mpbiran 885 . . . . . . 7  |-  ( ( F `  C )  e.  ( _V  \  1o )  <->  ( F `  C )  =/=  (/) )
3228, 31sylibr 204 . . . . . 6  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( F `  C
)  e.  ( _V 
\  1o ) )
3310adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  F : B --> A )
34 ffn 5584 . . . . . . 7  |-  ( F : B --> A  ->  F  Fn  B )
35 elpreima 5843 . . . . . . 7  |-  ( F  Fn  B  ->  ( C  e.  ( `' F " ( _V  \  1o ) )  <->  ( C  e.  B  /\  ( F `  C )  e.  ( _V  \  1o ) ) ) )
3633, 34, 353syl 19 . . . . . 6  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( C  e.  ( `' F " ( _V 
\  1o ) )  <-> 
( C  e.  B  /\  ( F `  C
)  e.  ( _V 
\  1o ) ) ) )
3727, 32, 36mpbir2and 889 . . . . 5  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  C  e.  ( `' F " ( _V  \  1o ) ) )
3825, 37ffvelrnd 5864 . . . 4  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( `' G `  C )  e.  dom  G )
3916simprd 450 . . . . . 6  |-  ( ph  ->  dom  G  e.  om )
4039adantr 452 . . . . 5  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  ->  dom  G  e.  om )
41 eqimss 3393 . . . . . . . . . 10  |-  ( x  =  dom  G  ->  x  C_  dom  G )
4241biantrurd 495 . . . . . . . . 9  |-  ( x  =  dom  G  -> 
( ( `' G `  C )  e.  x  <->  ( x  C_  dom  G  /\  ( `' G `  C )  e.  x ) ) )
43 eleq2 2497 . . . . . . . . 9  |-  ( x  =  dom  G  -> 
( ( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  dom  G ) )
4442, 43bitr3d 247 . . . . . . . 8  |-  ( x  =  dom  G  -> 
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  <->  ( `' G `  C )  e.  dom  G ) )
45 fveq2 5721 . . . . . . . . 9  |-  ( x  =  dom  G  -> 
( H `  x
)  =  ( H `
 dom  G )
)
4645sseq2d 3369 . . . . . . . 8  |-  ( x  =  dom  G  -> 
( ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )  <->  ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  dom  G ) ) )
4744, 46imbi12d 312 . . . . . . 7  |-  ( x  =  dom  G  -> 
( ( ( x 
C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) )  <->  ( ( `' G `  C )  e.  dom  G  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  dom  G ) ) ) )
4847imbi2d 308 . . . . . 6  |-  ( x  =  dom  G  -> 
( ( ( ph  /\  ( F `  C
)  =/=  (/) )  -> 
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) ) )  <-> 
( ( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( `' G `  C )  e.  dom  G  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  dom  G ) ) ) ) )
49 sseq1 3362 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x 
C_  dom  G  <->  (/)  C_  dom  G ) )
50 eleq2 2497 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  (/) ) )
5149, 50anbi12d 692 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  <->  ( (/)  C_  dom  G  /\  ( `' G `  C )  e.  (/) ) ) )
52 fveq2 5721 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( H `
 x )  =  ( H `  (/) ) )
5352sseq2d 3369 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  x )  <->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  (/) ) ) )
5451, 53imbi12d 312 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x
)  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )
)  <->  ( ( (/)  C_ 
dom  G  /\  ( `' G `  C )  e.  (/) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  (/) ) ) ) )
55 sseq1 3362 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  C_  dom  G  <->  y  C_  dom  G ) )
56 eleq2 2497 . . . . . . . . 9  |-  ( x  =  y  ->  (
( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  y ) )
5755, 56anbi12d 692 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  C_  dom  G  /\  ( `' G `  C )  e.  x
)  <->  ( y  C_  dom  G  /\  ( `' G `  C )  e.  y ) ) )
58 fveq2 5721 . . . . . . . . 9  |-  ( x  =  y  ->  ( H `  x )  =  ( H `  y ) )
5958sseq2d 3369 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x )  <->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  y )
) )
6057, 59imbi12d 312 . . . . . . 7  |-  ( x  =  y  ->  (
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) )  <->  ( (
y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) ) ) )
61 sseq1 3362 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( x  C_  dom  G  <->  suc  y  C_  dom  G
) )
62 eleq2 2497 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( `' G `  C )  e.  x  <->  ( `' G `  C )  e.  suc  y ) )
6361, 62anbi12d 692 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( x  C_  dom  G  /\  ( `' G `  C )  e.  x )  <->  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  suc  y ) ) )
64 fveq2 5721 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( H `  x
)  =  ( H `
 suc  y )
)
6564sseq2d 3369 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )  <->  ( ( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
6663, 65imbi12d 312 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( ( x 
C_  dom  G  /\  ( `' G `  C )  e.  x )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  x ) )  <->  ( ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) ) )
67 noel 3625 . . . . . . . . . 10  |-  -.  ( `' G `  C )  e.  (/)
6867pm2.21i 125 . . . . . . . . 9  |-  ( ( `' G `  C )  e.  (/)  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  (/) ) )
6968adantl 453 . . . . . . . 8  |-  ( (
(/)  C_  dom  G  /\  ( `' G `  C )  e.  (/) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  (/) ) )
7069a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( (/)  C_  dom  G  /\  ( `' G `  C )  e.  (/) )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  (/) ) ) )
71 fvex 5735 . . . . . . . . . . . 12  |-  ( `' G `  C )  e.  _V
7271elsuc 4643 . . . . . . . . . . 11  |-  ( ( `' G `  C )  e.  suc  y  <->  ( ( `' G `  C )  e.  y  \/  ( `' G `  C )  =  y ) )
73 sssucid 4651 . . . . . . . . . . . . . . . . 17  |-  y  C_  suc  y
74 sstr 3349 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  suc  y  /\  suc  y  C_  dom  G
)  ->  y  C_  dom  G )
7573, 74mpan 652 . . . . . . . . . . . . . . . 16  |-  ( suc  y  C_  dom  G  -> 
y  C_  dom  G )
7675ad2antrl 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  y  C_ 
dom  G )
77 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  ( `' G `  C )  e.  y )
78 pm2.27 37 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( ( y 
C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) ) )
7976, 77, 78syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) ) )
80 cantnfval.5 . . . . . . . . . . . . . . . . . . . . 21  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
8180cantnfvalf 7613 . . . . . . . . . . . . . . . . . . . 20  |-  H : om
--> On
8281ffvelrni 5862 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  om  ->  ( H `  y )  e.  On )
8382ad2antlr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  y )  e.  On )
847ad3antrrr 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  A  e.  On )
853ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  B  e.  On )
8613ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( `' F " ( _V  \  1o ) )  C_  B
)
87 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  suc  y  C_  dom  G )
88 sucidg 4652 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  om  ->  y  e.  suc  y )
8988ad2antlr 708 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  y  e.  suc  y )
9087, 89sseldd 3342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  y  e.  dom  G )
9115oif 7492 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  G : dom  G --> ( `' F " ( _V  \  1o ) )
9291ffvelrni 5862 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  dom  G  -> 
( G `  y
)  e.  ( `' F " ( _V 
\  1o ) ) )
9390, 92syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( G `  y )  e.  ( `' F " ( _V 
\  1o ) ) )
9486, 93sseldd 3342 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( G `  y )  e.  B
)
95 onelon 4599 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  On  /\  ( G `  y )  e.  B )  -> 
( G `  y
)  e.  On )
9685, 94, 95syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( G `  y )  e.  On )
97 oecl 6774 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  ( G `  y )  e.  On )  -> 
( A  ^o  ( G `  y )
)  e.  On )
9884, 96, 97syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( A  ^o  ( G `  y ) )  e.  On )
9910ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  F : B --> A )
10099, 94ffvelrnd 5864 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( F `  ( G `  y ) )  e.  A )
101 onelon 4599 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  ( F `  ( G `
 y ) )  e.  A )  -> 
( F `  ( G `  y )
)  e.  On )
10284, 100, 101syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( F `  ( G `  y ) )  e.  On )
103 omcl 6773 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  ^o  ( G `  y )
)  e.  On  /\  ( F `  ( G `
 y ) )  e.  On )  -> 
( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  e.  On )
10498, 102, 103syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( A  ^o  ( G `  y ) )  .o  ( F `  ( G `  y )
) )  e.  On )
105 oaword2 6789 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( H `  y
)  e.  On  /\  ( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  e.  On )  -> 
( H `  y
)  C_  ( (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
10683, 104, 105syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  y )  C_  (
( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
107 simplll 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ph )
108 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  y  e.  om )
1096, 7, 3, 15, 5, 80cantnfsuc 7618 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  om )  ->  ( H `  suc  y )  =  ( ( ( A  ^o  ( G `  y ) )  .o  ( F `  ( G `  y )
) )  +o  ( H `  y )
) )
110107, 108, 109syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  suc  y )  =  ( ( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
111106, 110sseqtr4d 3378 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( H `  y )  C_  ( H `  suc  y ) )
112 sstr 3349 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y )  /\  ( H `  y )  C_  ( H `  suc  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) )
113112expcom 425 . . . . . . . . . . . . . . . 16  |-  ( ( H `  y ) 
C_  ( H `  suc  y )  ->  (
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
114111, 113syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( ( A  ^o  C )  .o  ( F `  C ) )  C_  ( H `  y )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  suc  y ) ) )
115114adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  (
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
11679, 115syld 42 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  y ) )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) )
117116expr 599 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  e.  y  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
118 simprr 734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( `' G `  C )  =  y )
119118fveq2d 5725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( G `  ( `' G `  C )
)  =  ( G `
 y ) )
120 f1ocnvfv2 6008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G : dom  G -1-1-onto-> ( `' F " ( _V 
\  1o ) )  /\  C  e.  ( `' F " ( _V 
\  1o ) ) )  ->  ( G `  ( `' G `  C ) )  =  C )
12122, 37, 120syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( G `  ( `' G `  C ) )  =  C )
122121ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( G `  ( `' G `  C )
)  =  C )
123119, 122eqtr3d 2470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( G `  y )  =  C )
124123oveq2d 6090 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( A  ^o  ( G `  y ) )  =  ( A  ^o  C
) )
125123fveq2d 5725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( F `  ( G `  y ) )  =  ( F `  C
) )
126124, 125oveq12d 6092 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) )  =  ( ( A  ^o  C )  .o  ( F `  C
) ) )
127 oaword1 6788 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  e.  On  /\  ( H `  y )  e.  On )  ->  (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) ) 
C_  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
128104, 83, 127syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( A  ^o  ( G `  y ) )  .o  ( F `  ( G `  y )
) )  C_  (
( ( A  ^o  ( G `  y ) )  .o  ( F `
 ( G `  y ) ) )  +o  ( H `  y ) ) )
129128adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  ( G `  y )
)  .o  ( F `
 ( G `  y ) ) ) 
C_  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
130126, 129eqsstr3d 3376 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
131110adantrr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  ( H `  suc  y )  =  ( ( ( A  ^o  ( G `
 y ) )  .o  ( F `  ( G `  y ) ) )  +o  ( H `  y )
) )
132130, 131sseqtr4d 3378 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  ( suc  y  C_  dom  G  /\  ( `' G `  C )  =  y ) )  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) )
133132expr 599 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  =  y  ->  (
( A  ^o  C
)  .o  ( F `
 C ) ) 
C_  ( H `  suc  y ) ) )
134133a1dd 44 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  =  y  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
135117, 134jaod 370 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( ( `' G `  C )  e.  y  \/  ( `' G `  C )  =  y )  -> 
( ( ( y 
C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
13672, 135syl5bi 209 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  /\  suc  y  C_  dom  G )  ->  ( ( `' G `  C )  e.  suc  y  -> 
( ( ( y 
C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
137136expimpd 587 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  ->  (
( suc  y  C_  dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  ( ( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  suc  y ) ) ) )
138137com23 74 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  C )  =/=  (/) )  /\  y  e.  om )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( suc  y  C_ 
dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  suc  y ) ) ) )
139138expcom 425 . . . . . . 7  |-  ( y  e.  om  ->  (
( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( ( y  C_  dom  G  /\  ( `' G `  C )  e.  y )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  y ) )  -> 
( ( suc  y  C_ 
dom  G  /\  ( `' G `  C )  e.  suc  y )  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  suc  y ) ) ) ) )
14054, 60, 66, 70, 139finds2 4866 . . . . . 6  |-  ( x  e.  om  ->  (
( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( x  C_  dom  G  /\  ( `' G `  C )  e.  x
)  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  x )
) ) )
14148, 140vtoclga 3010 . . . . 5  |-  ( dom 
G  e.  om  ->  ( ( ph  /\  ( F `  C )  =/=  (/) )  ->  (
( `' G `  C )  e.  dom  G  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  dom  G ) ) ) )
14240, 141mpcom 34 . . . 4  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( `' G `  C )  e.  dom  G  ->  ( ( A  ^o  C )  .o  ( F `  C
) )  C_  ( H `  dom  G ) ) )
14338, 142mpd 15 . . 3  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( H `  dom  G ) )
1446, 7, 3, 15, 5, 80cantnfval 7616 . . . 4  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
145144adantr 452 . . 3  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
146143, 145sseqtr4d 3378 . 2  |-  ( (
ph  /\  ( F `  C )  =/=  (/) )  -> 
( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( ( A CNF  B ) `  F
) )
147 onelon 4599 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  B )  ->  C  e.  On )
1483, 26, 147syl2anc 643 . . . . 5  |-  ( ph  ->  C  e.  On )
149 oecl 6774 . . . . 5  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  ^o  C
)  e.  On )
1507, 148, 149syl2anc 643 . . . 4  |-  ( ph  ->  ( A  ^o  C
)  e.  On )
151 om0 6754 . . . 4  |-  ( ( A  ^o  C )  e.  On  ->  (
( A  ^o  C
)  .o  (/) )  =  (/) )
152150, 151syl 16 . . 3  |-  ( ph  ->  ( ( A  ^o  C )  .o  (/) )  =  (/) )
153 0ss 3649 . . 3  |-  (/)  C_  (
( A CNF  B ) `
 F )
154152, 153syl6eqss 3391 . 2  |-  ( ph  ->  ( ( A  ^o  C )  .o  (/) )  C_  ( ( A CNF  B
) `  F )
)
1552, 146, 154pm2.61ne 2674 1  |-  ( ph  ->  ( ( A  ^o  C )  .o  ( F `  C )
)  C_  ( ( A CNF  B ) `  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2949    \ cdif 3310    C_ wss 3313   (/)c0 3621    _E cep 4485    We wwe 4533   Oncon0 4574   suc csuc 4576   omcom 4838   `'ccnv 4870   dom cdm 4871   "cima 4874    Fn wfn 5442   -->wf 5443   -1-1-onto->wf1o 5446   ` cfv 5447    Isom wiso 5448  (class class class)co 6074    e. cmpt2 6076  seq𝜔cseqom 6697   1oc1o 6710    +o coa 6714    .o comu 6715    ^o coe 6716   Fincfn 7102  OrdIsocoi 7471   CNF ccnf 7609
This theorem is referenced by:  cantnflem3  7640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-seqom 6698  df-1o 6717  df-oadd 6721  df-omul 6722  df-oexp 6723  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-oi 7472  df-cnf 7610
  Copyright terms: Public domain W3C validator