MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1b Structured version   Unicode version

Theorem cantnflem1b 7642
Description: Lemma for cantnf 7649. (Contributed by Mario Carneiro, 4-Jun-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
oemapval.3  |-  ( ph  ->  F  e.  S )
oemapval.4  |-  ( ph  ->  G  e.  S )
oemapvali.5  |-  ( ph  ->  F T G )
oemapvali.6  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
cantnflem1.o  |-  O  = OrdIso
(  _E  ,  ( `' G " ( _V 
\  1o ) ) )
Assertion
Ref Expression
cantnflem1b  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  X  C_  ( O `  u )
)
Distinct variable groups:    u, c, w, x, y, z, B    A, c, u, w, x, y, z    T, c, u    u, F, w, x, y, z    S, c, u, x, y, z    G, c, u, w, x, y, z    u, O, w, x, y, z    ph, u, x, y, z   
u, X, w, x, y, z    F, c    ph, c
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)    O( c)    X( c)

Proof of Theorem cantnflem1b
StepHypRef Expression
1 simprr 734 . . . 4  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( `' O `  X )  C_  u
)
2 cantnflem1.o . . . . . . . 8  |-  O  = OrdIso
(  _E  ,  ( `' G " ( _V 
\  1o ) ) )
32oicl 7498 . . . . . . 7  |-  Ord  dom  O
4 cantnfs.3 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  On )
5 cnvimass 5224 . . . . . . . . . . . . 13  |-  ( `' G " ( _V 
\  1o ) ) 
C_  dom  G
6 oemapval.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e.  S )
7 cantnfs.1 . . . . . . . . . . . . . . . . 17  |-  S  =  dom  ( A CNF  B
)
8 cantnfs.2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  On )
97, 8, 4cantnfs 7621 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  ( `' G " ( _V 
\  1o ) )  e.  Fin ) ) )
106, 9mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G : B --> A  /\  ( `' G " ( _V  \  1o ) )  e.  Fin ) )
1110simpld 446 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : B --> A )
12 fdm 5595 . . . . . . . . . . . . . 14  |-  ( G : B --> A  ->  dom  G  =  B )
1311, 12syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  G  =  B )
145, 13syl5sseq 3396 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  B
)
154, 14ssexd 4350 . . . . . . . . . . 11  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  e.  _V )
167, 8, 4, 2, 6cantnfcl 7622 . . . . . . . . . . . 12  |-  ( ph  ->  (  _E  We  ( `' G " ( _V 
\  1o ) )  /\  dom  O  e. 
om ) )
1716simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  _E  We  ( `' G " ( _V 
\  1o ) ) )
182oiiso 7506 . . . . . . . . . . 11  |-  ( ( ( `' G "
( _V  \  1o ) )  e.  _V  /\  _E  We  ( `' G " ( _V 
\  1o ) ) )  ->  O  Isom  _E  ,  _E  ( dom 
O ,  ( `' G " ( _V 
\  1o ) ) ) )
1915, 17, 18syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  O  Isom  _E  ,  _E  ( dom  O ,  ( `' G " ( _V 
\  1o ) ) ) )
20 isof1o 6045 . . . . . . . . . 10  |-  ( O 
Isom  _E  ,  _E  ( dom  O ,  ( `' G " ( _V 
\  1o ) ) )  ->  O : dom  O -1-1-onto-> ( `' G "
( _V  \  1o ) ) )
2119, 20syl 16 . . . . . . . . 9  |-  ( ph  ->  O : dom  O -1-1-onto-> ( `' G " ( _V 
\  1o ) ) )
22 f1ocnv 5687 . . . . . . . . 9  |-  ( O : dom  O -1-1-onto-> ( `' G " ( _V 
\  1o ) )  ->  `' O :
( `' G "
( _V  \  1o ) ) -1-1-onto-> dom  O )
23 f1of 5674 . . . . . . . . 9  |-  ( `' O : ( `' G " ( _V 
\  1o ) ) -1-1-onto-> dom 
O  ->  `' O : ( `' G " ( _V  \  1o ) ) --> dom  O
)
2421, 22, 233syl 19 . . . . . . . 8  |-  ( ph  ->  `' O : ( `' G " ( _V 
\  1o ) ) --> dom  O )
25 oemapval.t . . . . . . . . 9  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
26 oemapval.3 . . . . . . . . 9  |-  ( ph  ->  F  e.  S )
27 oemapvali.5 . . . . . . . . 9  |-  ( ph  ->  F T G )
28 oemapvali.6 . . . . . . . . 9  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
297, 8, 4, 25, 26, 6, 27, 28cantnflem1a 7641 . . . . . . . 8  |-  ( ph  ->  X  e.  ( `' G " ( _V 
\  1o ) ) )
3024, 29ffvelrnd 5871 . . . . . . 7  |-  ( ph  ->  ( `' O `  X )  e.  dom  O )
31 ordelon 4605 . . . . . . 7  |-  ( ( Ord  dom  O  /\  ( `' O `  X )  e.  dom  O )  ->  ( `' O `  X )  e.  On )
323, 30, 31sylancr 645 . . . . . 6  |-  ( ph  ->  ( `' O `  X )  e.  On )
3332adantr 452 . . . . 5  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( `' O `  X )  e.  On )
343a1i 11 . . . . . . . 8  |-  ( ph  ->  Ord  dom  O )
35 ordelon 4605 . . . . . . . 8  |-  ( ( Ord  dom  O  /\  suc  u  e.  dom  O
)  ->  suc  u  e.  On )
3634, 35sylan 458 . . . . . . 7  |-  ( (
ph  /\  suc  u  e. 
dom  O )  ->  suc  u  e.  On )
37 sucelon 4797 . . . . . . 7  |-  ( u  e.  On  <->  suc  u  e.  On )
3836, 37sylibr 204 . . . . . 6  |-  ( (
ph  /\  suc  u  e. 
dom  O )  ->  u  e.  On )
3938adantrr 698 . . . . 5  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  u  e.  On )
40 ontri1 4615 . . . . 5  |-  ( ( ( `' O `  X )  e.  On  /\  u  e.  On )  ->  ( ( `' O `  X ) 
C_  u  <->  -.  u  e.  ( `' O `  X ) ) )
4133, 39, 40syl2anc 643 . . . 4  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( ( `' O `  X ) 
C_  u  <->  -.  u  e.  ( `' O `  X ) ) )
421, 41mpbid 202 . . 3  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  -.  u  e.  ( `' O `  X ) )
4319adantr 452 . . . . . 6  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  O  Isom  _E  ,  _E  ( dom  O , 
( `' G "
( _V  \  1o ) ) ) )
44 ordtr 4595 . . . . . . . 8  |-  ( Ord 
dom  O  ->  Tr  dom  O )
453, 44mp1i 12 . . . . . . 7  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  Tr  dom  O )
46 simprl 733 . . . . . . 7  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  suc  u  e.  dom  O )
47 trsuc 4666 . . . . . . 7  |-  ( ( Tr  dom  O  /\  suc  u  e.  dom  O
)  ->  u  e.  dom  O )
4845, 46, 47syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  u  e.  dom  O )
4930adantr 452 . . . . . 6  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( `' O `  X )  e.  dom  O )
50 isorel 6046 . . . . . 6  |-  ( ( O  Isom  _E  ,  _E  ( dom  O ,  ( `' G " ( _V 
\  1o ) ) )  /\  ( u  e.  dom  O  /\  ( `' O `  X )  e.  dom  O ) )  ->  ( u  _E  ( `' O `  X )  <->  ( O `  u )  _E  ( O `  ( `' O `  X )
) ) )
5143, 48, 49, 50syl12anc 1182 . . . . 5  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( u  _E  ( `' O `  X )  <->  ( O `  u )  _E  ( O `  ( `' O `  X )
) ) )
52 fvex 5742 . . . . . 6  |-  ( `' O `  X )  e.  _V
5352epelc 4496 . . . . 5  |-  ( u  _E  ( `' O `  X )  <->  u  e.  ( `' O `  X ) )
54 fvex 5742 . . . . . 6  |-  ( O `
 ( `' O `  X ) )  e. 
_V
5554epelc 4496 . . . . 5  |-  ( ( O `  u )  _E  ( O `  ( `' O `  X ) )  <->  ( O `  u )  e.  ( O `  ( `' O `  X ) ) )
5651, 53, 553bitr3g 279 . . . 4  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( u  e.  ( `' O `  X )  <->  ( O `  u )  e.  ( O `  ( `' O `  X ) ) ) )
57 f1ocnvfv2 6015 . . . . . . 7  |-  ( ( O : dom  O -1-1-onto-> ( `' G " ( _V 
\  1o ) )  /\  X  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( O `  ( `' O `  X ) )  =  X )
5821, 29, 57syl2anc 643 . . . . . 6  |-  ( ph  ->  ( O `  ( `' O `  X ) )  =  X )
5958adantr 452 . . . . 5  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( O `  ( `' O `  X ) )  =  X )
6059eleq2d 2503 . . . 4  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( ( O `
 u )  e.  ( O `  ( `' O `  X ) )  <->  ( O `  u )  e.  X
) )
6156, 60bitrd 245 . . 3  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( u  e.  ( `' O `  X )  <->  ( O `  u )  e.  X
) )
6242, 61mtbid 292 . 2  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  -.  ( O `  u )  e.  X
)
637, 8, 4, 25, 26, 6, 27, 28oemapvali 7640 . . . . . 6  |-  ( ph  ->  ( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
6463simp1d 969 . . . . 5  |-  ( ph  ->  X  e.  B )
65 onelon 4606 . . . . 5  |-  ( ( B  e.  On  /\  X  e.  B )  ->  X  e.  On )
664, 64, 65syl2anc 643 . . . 4  |-  ( ph  ->  X  e.  On )
6766adantr 452 . . 3  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  X  e.  On )
684adantr 452 . . . 4  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  B  e.  On )
6914adantr 452 . . . . 5  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( `' G " ( _V  \  1o ) )  C_  B
)
702oif 7499 . . . . . . 7  |-  O : dom  O --> ( `' G " ( _V  \  1o ) )
7170ffvelrni 5869 . . . . . 6  |-  ( u  e.  dom  O  -> 
( O `  u
)  e.  ( `' G " ( _V 
\  1o ) ) )
7248, 71syl 16 . . . . 5  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( O `  u )  e.  ( `' G " ( _V 
\  1o ) ) )
7369, 72sseldd 3349 . . . 4  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( O `  u )  e.  B
)
74 onelon 4606 . . . 4  |-  ( ( B  e.  On  /\  ( O `  u )  e.  B )  -> 
( O `  u
)  e.  On )
7568, 73, 74syl2anc 643 . . 3  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( O `  u )  e.  On )
76 ontri1 4615 . . 3  |-  ( ( X  e.  On  /\  ( O `  u )  e.  On )  -> 
( X  C_  ( O `  u )  <->  -.  ( O `  u
)  e.  X ) )
7767, 75, 76syl2anc 643 . 2  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  ( X  C_  ( O `  u )  <->  -.  ( O `  u
)  e.  X ) )
7862, 77mpbird 224 1  |-  ( (
ph  /\  ( suc  u  e.  dom  O  /\  ( `' O `  X ) 
C_  u ) )  ->  X  C_  ( O `  u )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2956    \ cdif 3317    C_ wss 3320   U.cuni 4015   class class class wbr 4212   {copab 4265   Tr wtr 4302    _E cep 4492    We wwe 4540   Ord word 4580   Oncon0 4581   suc csuc 4583   omcom 4845   `'ccnv 4877   dom cdm 4878   "cima 4881   -->wf 5450   -1-1-onto->wf1o 5453   ` cfv 5454    Isom wiso 5455  (class class class)co 6081   1oc1o 6717   Fincfn 7109  OrdIsocoi 7478   CNF ccnf 7616
This theorem is referenced by:  cantnflem1c  7643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-seqom 6705  df-1o 6724  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-cnf 7617
  Copyright terms: Public domain W3C validator