MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1d Structured version   Unicode version

Theorem cantnflem1d 7636
Description: Lemma for cantnf 7641. (Contributed by Mario Carneiro, 4-Jun-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
oemapval.3  |-  ( ph  ->  F  e.  S )
oemapval.4  |-  ( ph  ->  G  e.  S )
oemapvali.5  |-  ( ph  ->  F T G )
oemapvali.6  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
cantnflem1.o  |-  O  = OrdIso
(  _E  ,  ( `' G " ( _V 
\  1o ) ) )
cantnflem1.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( O `  k ) )  .o  ( G `  ( O `  k )
) )  +o  z
) ) ,  (/) )
Assertion
Ref Expression
cantnflem1d  |-  ( ph  ->  ( ( A CNF  B
) `  ( x  e.  B  |->  if ( x  C_  X , 
( F `  x
) ,  (/) ) ) )  e.  ( H `
 suc  ( `' O `  X )
) )
Distinct variable groups:    k, c, w, x, y, z, B    A, c, k, w, x, y, z    T, c, k    k, F, w, x, y, z    S, c, k, x, y, z    G, c, k, w, x, y, z    x, H, y    k, O, w, x, y, z    ph, k, x, y, z    k, X, w, x, y, z    F, c    ph, c
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)    H( z, w, k, c)    O( c)    X( c)

Proof of Theorem cantnflem1d
StepHypRef Expression
1 cantnfs.2 . . . . . 6  |-  ( ph  ->  A  e.  On )
2 cantnfs.3 . . . . . . 7  |-  ( ph  ->  B  e.  On )
3 cantnfs.1 . . . . . . . . 9  |-  S  =  dom  ( A CNF  B
)
4 oemapval.t . . . . . . . . 9  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
5 oemapval.3 . . . . . . . . 9  |-  ( ph  ->  F  e.  S )
6 oemapval.4 . . . . . . . . 9  |-  ( ph  ->  G  e.  S )
7 oemapvali.5 . . . . . . . . 9  |-  ( ph  ->  F T G )
8 oemapvali.6 . . . . . . . . 9  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
93, 1, 2, 4, 5, 6, 7, 8oemapvali 7632 . . . . . . . 8  |-  ( ph  ->  ( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
109simp1d 969 . . . . . . 7  |-  ( ph  ->  X  e.  B )
11 onelon 4598 . . . . . . 7  |-  ( ( B  e.  On  /\  X  e.  B )  ->  X  e.  On )
122, 10, 11syl2anc 643 . . . . . 6  |-  ( ph  ->  X  e.  On )
13 oecl 6773 . . . . . 6  |-  ( ( A  e.  On  /\  X  e.  On )  ->  ( A  ^o  X
)  e.  On )
141, 12, 13syl2anc 643 . . . . 5  |-  ( ph  ->  ( A  ^o  X
)  e.  On )
153, 1, 2cantnfs 7613 . . . . . . . . 9  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  ( `' G " ( _V 
\  1o ) )  e.  Fin ) ) )
166, 15mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( G : B --> A  /\  ( `' G " ( _V  \  1o ) )  e.  Fin ) )
1716simpld 446 . . . . . . 7  |-  ( ph  ->  G : B --> A )
1817, 10ffvelrnd 5863 . . . . . 6  |-  ( ph  ->  ( G `  X
)  e.  A )
19 onelon 4598 . . . . . 6  |-  ( ( A  e.  On  /\  ( G `  X )  e.  A )  -> 
( G `  X
)  e.  On )
201, 18, 19syl2anc 643 . . . . 5  |-  ( ph  ->  ( G `  X
)  e.  On )
21 omcl 6772 . . . . 5  |-  ( ( ( A  ^o  X
)  e.  On  /\  ( G `  X )  e.  On )  -> 
( ( A  ^o  X )  .o  ( G `  X )
)  e.  On )
2214, 20, 21syl2anc 643 . . . 4  |-  ( ph  ->  ( ( A  ^o  X )  .o  ( G `  X )
)  e.  On )
23 cnvimass 5216 . . . . . . . . . . . 12  |-  ( `' G " ( _V 
\  1o ) ) 
C_  dom  G
24 fdm 5587 . . . . . . . . . . . . 13  |-  ( G : B --> A  ->  dom  G  =  B )
2517, 24syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  dom  G  =  B )
2623, 25syl5sseq 3388 . . . . . . . . . . 11  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  B
)
272, 26ssexd 4342 . . . . . . . . . 10  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  e.  _V )
28 cantnflem1.o . . . . . . . . . . . 12  |-  O  = OrdIso
(  _E  ,  ( `' G " ( _V 
\  1o ) ) )
293, 1, 2, 28, 6cantnfcl 7614 . . . . . . . . . . 11  |-  ( ph  ->  (  _E  We  ( `' G " ( _V 
\  1o ) )  /\  dom  O  e. 
om ) )
3029simpld 446 . . . . . . . . . 10  |-  ( ph  ->  _E  We  ( `' G " ( _V 
\  1o ) ) )
3128oiiso 7498 . . . . . . . . . 10  |-  ( ( ( `' G "
( _V  \  1o ) )  e.  _V  /\  _E  We  ( `' G " ( _V 
\  1o ) ) )  ->  O  Isom  _E  ,  _E  ( dom 
O ,  ( `' G " ( _V 
\  1o ) ) ) )
3227, 30, 31syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  O  Isom  _E  ,  _E  ( dom  O ,  ( `' G " ( _V 
\  1o ) ) ) )
33 isof1o 6037 . . . . . . . . 9  |-  ( O 
Isom  _E  ,  _E  ( dom  O ,  ( `' G " ( _V 
\  1o ) ) )  ->  O : dom  O -1-1-onto-> ( `' G "
( _V  \  1o ) ) )
3432, 33syl 16 . . . . . . . 8  |-  ( ph  ->  O : dom  O -1-1-onto-> ( `' G " ( _V 
\  1o ) ) )
35 f1ocnv 5679 . . . . . . . 8  |-  ( O : dom  O -1-1-onto-> ( `' G " ( _V 
\  1o ) )  ->  `' O :
( `' G "
( _V  \  1o ) ) -1-1-onto-> dom  O )
36 f1of 5666 . . . . . . . 8  |-  ( `' O : ( `' G " ( _V 
\  1o ) ) -1-1-onto-> dom 
O  ->  `' O : ( `' G " ( _V  \  1o ) ) --> dom  O
)
3734, 35, 363syl 19 . . . . . . 7  |-  ( ph  ->  `' O : ( `' G " ( _V 
\  1o ) ) --> dom  O )
383, 1, 2, 4, 5, 6, 7, 8cantnflem1a 7633 . . . . . . 7  |-  ( ph  ->  X  e.  ( `' G " ( _V 
\  1o ) ) )
3937, 38ffvelrnd 5863 . . . . . 6  |-  ( ph  ->  ( `' O `  X )  e.  dom  O )
4029simprd 450 . . . . . 6  |-  ( ph  ->  dom  O  e.  om )
41 elnn 4847 . . . . . 6  |-  ( ( ( `' O `  X )  e.  dom  O  /\  dom  O  e. 
om )  ->  ( `' O `  X )  e.  om )
4239, 40, 41syl2anc 643 . . . . 5  |-  ( ph  ->  ( `' O `  X )  e.  om )
43 cantnflem1.h . . . . . . 7  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( O `  k ) )  .o  ( G `  ( O `  k )
) )  +o  z
) ) ,  (/) )
4443cantnfvalf 7612 . . . . . 6  |-  H : om
--> On
4544ffvelrni 5861 . . . . 5  |-  ( ( `' O `  X )  e.  om  ->  ( H `  ( `' O `  X )
)  e.  On )
4642, 45syl 16 . . . 4  |-  ( ph  ->  ( H `  ( `' O `  X ) )  e.  On )
47 oaword1 6787 . . . 4  |-  ( ( ( ( A  ^o  X )  .o  ( G `  X )
)  e.  On  /\  ( H `  ( `' O `  X ) )  e.  On )  ->  ( ( A  ^o  X )  .o  ( G `  X
) )  C_  (
( ( A  ^o  X )  .o  ( G `  X )
)  +o  ( H `
 ( `' O `  X ) ) ) )
4822, 46, 47syl2anc 643 . . 3  |-  ( ph  ->  ( ( A  ^o  X )  .o  ( G `  X )
)  C_  ( (
( A  ^o  X
)  .o  ( G `
 X ) )  +o  ( H `  ( `' O `  X ) ) ) )
493, 1, 2, 28, 6, 43cantnfsuc 7617 . . . . 5  |-  ( (
ph  /\  ( `' O `  X )  e.  om )  ->  ( H `  suc  ( `' O `  X ) )  =  ( ( ( A  ^o  ( O `  ( `' O `  X )
) )  .o  ( G `  ( O `  ( `' O `  X ) ) ) )  +o  ( H `
 ( `' O `  X ) ) ) )
5042, 49mpdan 650 . . . 4  |-  ( ph  ->  ( H `  suc  ( `' O `  X ) )  =  ( ( ( A  ^o  ( O `  ( `' O `  X )
) )  .o  ( G `  ( O `  ( `' O `  X ) ) ) )  +o  ( H `
 ( `' O `  X ) ) ) )
51 f1ocnvfv2 6007 . . . . . . . 8  |-  ( ( O : dom  O -1-1-onto-> ( `' G " ( _V 
\  1o ) )  /\  X  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( O `  ( `' O `  X ) )  =  X )
5234, 38, 51syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( O `  ( `' O `  X ) )  =  X )
5352oveq2d 6089 . . . . . 6  |-  ( ph  ->  ( A  ^o  ( O `  ( `' O `  X )
) )  =  ( A  ^o  X ) )
5452fveq2d 5724 . . . . . 6  |-  ( ph  ->  ( G `  ( O `  ( `' O `  X )
) )  =  ( G `  X ) )
5553, 54oveq12d 6091 . . . . 5  |-  ( ph  ->  ( ( A  ^o  ( O `  ( `' O `  X ) ) )  .o  ( G `  ( O `  ( `' O `  X ) ) ) )  =  ( ( A  ^o  X )  .o  ( G `  X ) ) )
5655oveq1d 6088 . . . 4  |-  ( ph  ->  ( ( ( A  ^o  ( O `  ( `' O `  X ) ) )  .o  ( G `  ( O `  ( `' O `  X ) ) ) )  +o  ( H `
 ( `' O `  X ) ) )  =  ( ( ( A  ^o  X )  .o  ( G `  X ) )  +o  ( H `  ( `' O `  X ) ) ) )
5750, 56eqtrd 2467 . . 3  |-  ( ph  ->  ( H `  suc  ( `' O `  X ) )  =  ( ( ( A  ^o  X
)  .o  ( G `
 X ) )  +o  ( H `  ( `' O `  X ) ) ) )
5848, 57sseqtr4d 3377 . 2  |-  ( ph  ->  ( ( A  ^o  X )  .o  ( G `  X )
)  C_  ( H `  suc  ( `' O `  X ) ) )
59 onss 4763 . . . . . . . . . . 11  |-  ( B  e.  On  ->  B  C_  On )
602, 59syl 16 . . . . . . . . . 10  |-  ( ph  ->  B  C_  On )
6160sselda 3340 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  On )
6212adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  X  e.  On )
63 onsseleq 4614 . . . . . . . . 9  |-  ( ( x  e.  On  /\  X  e.  On )  ->  ( x  C_  X  <->  ( x  e.  X  \/  x  =  X )
) )
6461, 62, 63syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  (
x  C_  X  <->  ( x  e.  X  \/  x  =  X ) ) )
65 orcom 377 . . . . . . . 8  |-  ( ( x  e.  X  \/  x  =  X )  <->  ( x  =  X  \/  x  e.  X )
)
6664, 65syl6bb 253 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
x  C_  X  <->  ( x  =  X  \/  x  e.  X ) ) )
6766ifbid 3749 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  if ( x  C_  X , 
( F `  x
) ,  (/) )  =  if ( ( x  =  X  \/  x  e.  X ) ,  ( F `  x ) ,  (/) ) )
6867mpteq2dva 4287 . . . . 5  |-  ( ph  ->  ( x  e.  B  |->  if ( x  C_  X ,  ( F `  x ) ,  (/) ) )  =  ( x  e.  B  |->  if ( ( x  =  X  \/  x  e.  X ) ,  ( F `  x ) ,  (/) ) ) )
6968fveq2d 5724 . . . 4  |-  ( ph  ->  ( ( A CNF  B
) `  ( x  e.  B  |->  if ( x  C_  X , 
( F `  x
) ,  (/) ) ) )  =  ( ( A CNF  B ) `  ( x  e.  B  |->  if ( ( x  =  X  \/  x  e.  X ) ,  ( F `  x ) ,  (/) ) ) ) )
703, 1, 2cantnfs 7613 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )
715, 70mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  ( F : B --> A  /\  ( `' F " ( _V  \  1o ) )  e.  Fin ) )
7271simpld 446 . . . . . . . . . 10  |-  ( ph  ->  F : B --> A )
7372ffvelrnda 5862 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  ( F `  y )  e.  A )
74 ne0i 3626 . . . . . . . . . . . 12  |-  ( ( G `  X )  e.  A  ->  A  =/=  (/) )
7518, 74syl 16 . . . . . . . . . . 11  |-  ( ph  ->  A  =/=  (/) )
76 on0eln0 4628 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
771, 76syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
7875, 77mpbird 224 . . . . . . . . . 10  |-  ( ph  -> 
(/)  e.  A )
7978adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  (/)  e.  A
)
80 ifcl 3767 . . . . . . . . 9  |-  ( ( ( F `  y
)  e.  A  /\  (/) 
e.  A )  ->  if ( y  e.  X ,  ( F `  y ) ,  (/) )  e.  A )
8173, 79, 80syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  if ( y  e.  X ,  ( F `  y ) ,  (/) )  e.  A )
82 eqid 2435 . . . . . . . 8  |-  ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) )  =  ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) )
8381, 82fmptd 5885 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) : B --> A )
8471simprd 450 . . . . . . . 8  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  e.  Fin )
85 df1o2 6728 . . . . . . . . . . 11  |-  1o  =  { (/) }
8685difeq2i 3454 . . . . . . . . . 10  |-  ( _V 
\  1o )  =  ( _V  \  { (/)
} )
8786imaeq2i 5193 . . . . . . . . 9  |-  ( `' ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) " ( _V  \  1o ) )  =  ( `' ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) " ( _V  \  { (/) } ) )
8886imaeq2i 5193 . . . . . . . . . . . . . 14  |-  ( `' F " ( _V 
\  1o ) )  =  ( `' F " ( _V  \  { (/)
} ) )
89 eqimss2 3393 . . . . . . . . . . . . . 14  |-  ( ( `' F " ( _V 
\  1o ) )  =  ( `' F " ( _V  \  { (/)
} ) )  -> 
( `' F "
( _V  \  { (/)
} ) )  C_  ( `' F " ( _V 
\  1o ) ) )
9088, 89mp1i 12 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' F "
( _V  \  { (/)
} ) )  C_  ( `' F " ( _V 
\  1o ) ) )
9172, 90suppssr 5856 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( B  \  ( `' F " ( _V 
\  1o ) ) ) )  ->  ( F `  y )  =  (/) )
9291ifeq1d 3745 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( B  \  ( `' F " ( _V 
\  1o ) ) ) )  ->  if ( y  e.  X ,  ( F `  y ) ,  (/) )  =  if (
y  e.  X ,  (/)
,  (/) ) )
93 ifid 3763 . . . . . . . . . . 11  |-  if ( y  e.  X ,  (/)
,  (/) )  =  (/)
9492, 93syl6eq 2483 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( B  \  ( `' F " ( _V 
\  1o ) ) ) )  ->  if ( y  e.  X ,  ( F `  y ) ,  (/) )  =  (/) )
9594suppss2 6292 . . . . . . . . 9  |-  ( ph  ->  ( `' ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) )
" ( _V  \  { (/) } ) ) 
C_  ( `' F " ( _V  \  1o ) ) )
9687, 95syl5eqss 3384 . . . . . . . 8  |-  ( ph  ->  ( `' ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) )
" ( _V  \  1o ) )  C_  ( `' F " ( _V 
\  1o ) ) )
97 ssfi 7321 . . . . . . . 8  |-  ( ( ( `' F "
( _V  \  1o ) )  e.  Fin  /\  ( `' ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) )
" ( _V  \  1o ) )  C_  ( `' F " ( _V 
\  1o ) ) )  ->  ( `' ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) " ( _V  \  1o ) )  e.  Fin )
9884, 96, 97syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( `' ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) )
" ( _V  \  1o ) )  e.  Fin )
993, 1, 2cantnfs 7613 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) )  e.  S  <->  ( ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) ) : B --> A  /\  ( `' ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) "
( _V  \  1o ) )  e.  Fin ) ) )
10083, 98, 99mpbir2and 889 . . . . . 6  |-  ( ph  ->  ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) )  e.  S
)
10172, 10ffvelrnd 5863 . . . . . 6  |-  ( ph  ->  ( F `  X
)  e.  A )
102 eldifn 3462 . . . . . . . . . 10  |-  ( y  e.  ( B  \  X )  ->  -.  y  e.  X )
103102adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( B  \  X ) )  ->  -.  y  e.  X )
104 iffalse 3738 . . . . . . . . 9  |-  ( -.  y  e.  X  ->  if ( y  e.  X ,  ( F `  y ) ,  (/) )  =  (/) )
105103, 104syl 16 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( B  \  X ) )  ->  if (
y  e.  X , 
( F `  y
) ,  (/) )  =  (/) )
106105suppss2 6292 . . . . . . 7  |-  ( ph  ->  ( `' ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) )
" ( _V  \  { (/) } ) ) 
C_  X )
10787, 106syl5eqss 3384 . . . . . 6  |-  ( ph  ->  ( `' ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) )
" ( _V  \  1o ) )  C_  X
)
108 fveq2 5720 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
109108adantl 453 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  x  =  X )  ->  ( F `  x
)  =  ( F `
 X ) )
110109ifeq1da 3756 . . . . . . . . 9  |-  ( x  e.  B  ->  if ( x  =  X ,  ( F `  x ) ,  ( ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) `  x
) )  =  if ( x  =  X ,  ( F `  X ) ,  ( ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) `  x
) ) )
111 eleq1 2495 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
y  e.  X  <->  x  e.  X ) )
112 fveq2 5720 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
113 eqidd 2436 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (/)  =  (/) )
114111, 112, 113ifbieq12d 3753 . . . . . . . . . . 11  |-  ( y  =  x  ->  if ( y  e.  X ,  ( F `  y ) ,  (/) )  =  if (
x  e.  X , 
( F `  x
) ,  (/) ) )
115 fvex 5734 . . . . . . . . . . . 12  |-  ( F `
 x )  e. 
_V
116 0ex 4331 . . . . . . . . . . . 12  |-  (/)  e.  _V
117115, 116ifex 3789 . . . . . . . . . . 11  |-  if ( x  e.  X , 
( F `  x
) ,  (/) )  e. 
_V
118114, 82, 117fvmpt 5798 . . . . . . . . . 10  |-  ( x  e.  B  ->  (
( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) `  x
)  =  if ( x  e.  X , 
( F `  x
) ,  (/) ) )
119118ifeq2d 3746 . . . . . . . . 9  |-  ( x  e.  B  ->  if ( x  =  X ,  ( F `  x ) ,  ( ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) `  x
) )  =  if ( x  =  X ,  ( F `  x ) ,  if ( x  e.  X ,  ( F `  x ) ,  (/) ) ) )
120110, 119eqtr3d 2469 . . . . . . . 8  |-  ( x  e.  B  ->  if ( x  =  X ,  ( F `  X ) ,  ( ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) `  x
) )  =  if ( x  =  X ,  ( F `  x ) ,  if ( x  e.  X ,  ( F `  x ) ,  (/) ) ) )
121 ifor 3771 . . . . . . . 8  |-  if ( ( x  =  X  \/  x  e.  X
) ,  ( F `
 x ) ,  (/) )  =  if ( x  =  X ,  ( F `  x ) ,  if ( x  e.  X ,  ( F `  x ) ,  (/) ) )
122120, 121syl6reqr 2486 . . . . . . 7  |-  ( x  e.  B  ->  if ( ( x  =  X  \/  x  e.  X ) ,  ( F `  x ) ,  (/) )  =  if ( x  =  X ,  ( F `  X ) ,  ( ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) `  x
) ) )
123122mpteq2ia 4283 . . . . . 6  |-  ( x  e.  B  |->  if ( ( x  =  X  \/  x  e.  X
) ,  ( F `
 x ) ,  (/) ) )  =  ( x  e.  B  |->  if ( x  =  X ,  ( F `  X ) ,  ( ( y  e.  B  |->  if ( y  e.  X ,  ( F `
 y ) ,  (/) ) ) `  x
) ) )
1243, 1, 2, 100, 10, 101, 107, 123cantnfp1 7629 . . . . 5  |-  ( ph  ->  ( ( x  e.  B  |->  if ( ( x  =  X  \/  x  e.  X ) ,  ( F `  x ) ,  (/) ) )  e.  S  /\  ( ( A CNF  B
) `  ( x  e.  B  |->  if ( ( x  =  X  \/  x  e.  X
) ,  ( F `
 x ) ,  (/) ) ) )  =  ( ( ( A  ^o  X )  .o  ( F `  X
) )  +o  (
( A CNF  B ) `
 ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) ) ) ) )
125124simprd 450 . . . 4  |-  ( ph  ->  ( ( A CNF  B
) `  ( x  e.  B  |->  if ( ( x  =  X  \/  x  e.  X
) ,  ( F `
 x ) ,  (/) ) ) )  =  ( ( ( A  ^o  X )  .o  ( F `  X
) )  +o  (
( A CNF  B ) `
 ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) ) ) )
12669, 125eqtrd 2467 . . 3  |-  ( ph  ->  ( ( A CNF  B
) `  ( x  e.  B  |->  if ( x  C_  X , 
( F `  x
) ,  (/) ) ) )  =  ( ( ( A  ^o  X
)  .o  ( F `
 X ) )  +o  ( ( A CNF 
B ) `  (
y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) ) ) )
127 onelon 4598 . . . . . . 7  |-  ( ( A  e.  On  /\  ( F `  X )  e.  A )  -> 
( F `  X
)  e.  On )
1281, 101, 127syl2anc 643 . . . . . 6  |-  ( ph  ->  ( F `  X
)  e.  On )
129 omsuc 6762 . . . . . 6  |-  ( ( ( A  ^o  X
)  e.  On  /\  ( F `  X )  e.  On )  -> 
( ( A  ^o  X )  .o  suc  ( F `  X ) )  =  ( ( ( A  ^o  X
)  .o  ( F `
 X ) )  +o  ( A  ^o  X ) ) )
13014, 128, 129syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( A  ^o  X )  .o  suc  ( F `  X ) )  =  ( ( ( A  ^o  X
)  .o  ( F `
 X ) )  +o  ( A  ^o  X ) ) )
131 eloni 4583 . . . . . . . 8  |-  ( ( G `  X )  e.  On  ->  Ord  ( G `  X ) )
13220, 131syl 16 . . . . . . 7  |-  ( ph  ->  Ord  ( G `  X ) )
1339simp2d 970 . . . . . . 7  |-  ( ph  ->  ( F `  X
)  e.  ( G `
 X ) )
134 ordsucss 4790 . . . . . . 7  |-  ( Ord  ( G `  X
)  ->  ( ( F `  X )  e.  ( G `  X
)  ->  suc  ( F `
 X )  C_  ( G `  X ) ) )
135132, 133, 134sylc 58 . . . . . 6  |-  ( ph  ->  suc  ( F `  X )  C_  ( G `  X )
)
136 suceloni 4785 . . . . . . . 8  |-  ( ( F `  X )  e.  On  ->  suc  ( F `  X )  e.  On )
137128, 136syl 16 . . . . . . 7  |-  ( ph  ->  suc  ( F `  X )  e.  On )
138 omwordi 6806 . . . . . . 7  |-  ( ( suc  ( F `  X )  e.  On  /\  ( G `  X
)  e.  On  /\  ( A  ^o  X )  e.  On )  -> 
( suc  ( F `  X )  C_  ( G `  X )  ->  ( ( A  ^o  X )  .o  suc  ( F `  X ) )  C_  ( ( A  ^o  X )  .o  ( G `  X
) ) ) )
139137, 20, 14, 138syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( suc  ( F `
 X )  C_  ( G `  X )  ->  ( ( A  ^o  X )  .o 
suc  ( F `  X ) )  C_  ( ( A  ^o  X )  .o  ( G `  X )
) ) )
140135, 139mpd 15 . . . . 5  |-  ( ph  ->  ( ( A  ^o  X )  .o  suc  ( F `  X ) )  C_  ( ( A  ^o  X )  .o  ( G `  X
) ) )
141130, 140eqsstr3d 3375 . . . 4  |-  ( ph  ->  ( ( ( A  ^o  X )  .o  ( F `  X
) )  +o  ( A  ^o  X ) ) 
C_  ( ( A  ^o  X )  .o  ( G `  X
) ) )
1423, 1, 2, 100, 78, 12, 107cantnflt2 7620 . . . . 5  |-  ( ph  ->  ( ( A CNF  B
) `  ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) ) )  e.  ( A  ^o  X ) )
143 onelon 4598 . . . . . . 7  |-  ( ( ( A  ^o  X
)  e.  On  /\  ( ( A CNF  B
) `  ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) ) )  e.  ( A  ^o  X ) )  ->  ( ( A CNF 
B ) `  (
y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) )  e.  On )
14414, 142, 143syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( A CNF  B
) `  ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) ) )  e.  On )
145 omcl 6772 . . . . . . 7  |-  ( ( ( A  ^o  X
)  e.  On  /\  ( F `  X )  e.  On )  -> 
( ( A  ^o  X )  .o  ( F `  X )
)  e.  On )
14614, 128, 145syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( A  ^o  X )  .o  ( F `  X )
)  e.  On )
147 oaord 6782 . . . . . 6  |-  ( ( ( ( A CNF  B
) `  ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) ) )  e.  On  /\  ( A  ^o  X )  e.  On  /\  (
( A  ^o  X
)  .o  ( F `
 X ) )  e.  On )  -> 
( ( ( A CNF 
B ) `  (
y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) )  e.  ( A  ^o  X
)  <->  ( ( ( A  ^o  X )  .o  ( F `  X ) )  +o  ( ( A CNF  B
) `  ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) ) ) )  e.  ( ( ( A  ^o  X )  .o  ( F `  X )
)  +o  ( A  ^o  X ) ) ) )
148144, 14, 146, 147syl3anc 1184 . . . . 5  |-  ( ph  ->  ( ( ( A CNF 
B ) `  (
y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) )  e.  ( A  ^o  X
)  <->  ( ( ( A  ^o  X )  .o  ( F `  X ) )  +o  ( ( A CNF  B
) `  ( y  e.  B  |->  if ( y  e.  X , 
( F `  y
) ,  (/) ) ) ) )  e.  ( ( ( A  ^o  X )  .o  ( F `  X )
)  +o  ( A  ^o  X ) ) ) )
149142, 148mpbid 202 . . . 4  |-  ( ph  ->  ( ( ( A  ^o  X )  .o  ( F `  X
) )  +o  (
( A CNF  B ) `
 ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) ) )  e.  ( ( ( A  ^o  X
)  .o  ( F `
 X ) )  +o  ( A  ^o  X ) ) )
150141, 149sseldd 3341 . . 3  |-  ( ph  ->  ( ( ( A  ^o  X )  .o  ( F `  X
) )  +o  (
( A CNF  B ) `
 ( y  e.  B  |->  if ( y  e.  X ,  ( F `  y ) ,  (/) ) ) ) )  e.  ( ( A  ^o  X )  .o  ( G `  X ) ) )
151126, 150eqeltrd 2509 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  ( x  e.  B  |->  if ( x  C_  X , 
( F `  x
) ,  (/) ) ) )  e.  ( ( A  ^o  X )  .o  ( G `  X ) ) )
15258, 151sseldd 3341 1  |-  ( ph  ->  ( ( A CNF  B
) `  ( x  e.  B  |->  if ( x  C_  X , 
( F `  x
) ,  (/) ) ) )  e.  ( H `
 suc  ( `' O `  X )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    \ cdif 3309    C_ wss 3312   (/)c0 3620   ifcif 3731   {csn 3806   U.cuni 4007   class class class wbr 4204   {copab 4257    e. cmpt 4258    _E cep 4484    We wwe 4532   Ord word 4572   Oncon0 4573   suc csuc 4575   omcom 4837   `'ccnv 4869   dom cdm 4870   "cima 4873   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446    Isom wiso 5447  (class class class)co 6073    e. cmpt2 6075  seq𝜔cseqom 6696   1oc1o 6709    +o coa 6713    .o comu 6714    ^o coe 6715   Fincfn 7101  OrdIsocoi 7470   CNF ccnf 7608
This theorem is referenced by:  cantnflem1  7637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-seqom 6697  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-oexp 6722  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-cnf 7609
  Copyright terms: Public domain W3C validator