MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem3 Structured version   Unicode version

Theorem cantnflem3 7639
Description: Lemma for cantnf 7641. Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than  C has a normal form, we can use oeeu 6838 to factor  C into the form  ( ( A  ^o  X )  .o  Y )  +o  Z where  0  <  Y  <  A and  Z  <  ( A  ^o  X ) (and a fortiori  X  < 
B). Then since  Z  <  ( A  ^o  X )  <_ 
( A  ^o  X
)  .o  Y  <_  C,  Z has a normal form, and by appending the term  ( A  ^o  X )  .o  Y using cantnfp1 7629 we get a normal form for 
C. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
cantnf.1  |-  ( ph  ->  C  e.  ( A  ^o  B ) )
cantnf.2  |-  ( ph  ->  C  C_  ran  ( A CNF 
B ) )
cantnf.3  |-  ( ph  -> 
(/)  e.  C )
cantnf.4  |-  X  = 
U. |^| { c  e.  On  |  C  e.  ( A  ^o  c
) }
cantnf.5  |-  P  =  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  X ) ( d  =  <. a ,  b
>.  /\  ( ( ( A  ^o  X )  .o  a )  +o  b )  =  C ) )
cantnf.6  |-  Y  =  ( 1st `  P
)
cantnf.7  |-  Z  =  ( 2nd `  P
)
cantnf.8  |-  ( ph  ->  G  e.  S )
cantnf.9  |-  ( ph  ->  ( ( A CNF  B
) `  G )  =  Z )
cantnf.f  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
Assertion
Ref Expression
cantnflem3  |-  ( ph  ->  C  e.  ran  ( A CNF  B ) )
Distinct variable groups:    t, c, w, x, y, z, B   
a, b, c, d, w, x, y, z, C    t, a, A, b, c, d, w, x, y, z    T, c, t    w, F, x, y, z    S, c, t, x, y, z   
t, Z, x, y, z    G, c, t, w, x, y, z    ph, t, x, y, z    t, Y, w, x, y, z    X, a, b, d, t, w, x, y, z
Allowed substitution hints:    ph( w, a, b, c, d)    B( a, b, d)    C( t)    P( x, y, z, w, t, a, b, c, d)    S( w, a, b, d)    T( x, y, z, w, a, b, d)    F( t, a, b, c, d)    G( a, b, d)    X( c)    Y( a, b, c, d)    Z( w, a, b, c, d)

Proof of Theorem cantnflem3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 cantnfs.1 . . . . 5  |-  S  =  dom  ( A CNF  B
)
2 cantnfs.2 . . . . 5  |-  ( ph  ->  A  e.  On )
3 cantnfs.3 . . . . 5  |-  ( ph  ->  B  e.  On )
4 cantnf.8 . . . . 5  |-  ( ph  ->  G  e.  S )
5 oemapval.t . . . . . . . . . . . . . 14  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
6 cantnf.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  ( A  ^o  B ) )
7 cantnf.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  C_  ran  ( A CNF 
B ) )
8 cantnf.3 . . . . . . . . . . . . . 14  |-  ( ph  -> 
(/)  e.  C )
91, 2, 3, 5, 6, 7, 8cantnflem2 7638 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  ( On  \  2o )  /\  C  e.  ( On  \  1o ) ) )
10 eqid 2435 . . . . . . . . . . . . . . 15  |-  X  =  X
11 eqid 2435 . . . . . . . . . . . . . . 15  |-  Y  =  Y
12 eqid 2435 . . . . . . . . . . . . . . 15  |-  Z  =  Z
1310, 11, 123pm3.2i 1132 . . . . . . . . . . . . . 14  |-  ( X  =  X  /\  Y  =  Y  /\  Z  =  Z )
14 cantnf.4 . . . . . . . . . . . . . . 15  |-  X  = 
U. |^| { c  e.  On  |  C  e.  ( A  ^o  c
) }
15 cantnf.5 . . . . . . . . . . . . . . 15  |-  P  =  ( iota d E. a  e.  On  E. b  e.  ( A  ^o  X ) ( d  =  <. a ,  b
>.  /\  ( ( ( A  ^o  X )  .o  a )  +o  b )  =  C ) )
16 cantnf.6 . . . . . . . . . . . . . . 15  |-  Y  =  ( 1st `  P
)
17 cantnf.7 . . . . . . . . . . . . . . 15  |-  Z  =  ( 2nd `  P
)
1814, 15, 16, 17oeeui 6837 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( On 
\  2o )  /\  C  e.  ( On  \  1o ) )  -> 
( ( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C )  <->  ( X  =  X  /\  Y  =  Y  /\  Z  =  Z ) ) )
1913, 18mpbiri 225 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( On 
\  2o )  /\  C  e.  ( On  \  1o ) )  -> 
( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C ) )
209, 19syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( X  e.  On  /\  Y  e.  ( A  \  1o )  /\  Z  e.  ( A  ^o  X ) )  /\  ( ( ( A  ^o  X
)  .o  Y )  +o  Z )  =  C ) )
2120simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  On  /\  Y  e.  ( A 
\  1o )  /\  Z  e.  ( A  ^o  X ) ) )
2221simp1d 969 . . . . . . . . . 10  |-  ( ph  ->  X  e.  On )
23 oecl 6773 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  X  e.  On )  ->  ( A  ^o  X
)  e.  On )
242, 22, 23syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( A  ^o  X
)  e.  On )
2521simp2d 970 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( A 
\  1o ) )
2625eldifad 3324 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  A )
27 onelon 4598 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  Y  e.  A )  ->  Y  e.  On )
282, 26, 27syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  Y  e.  On )
29 dif1o 6736 . . . . . . . . . . . 12  |-  ( Y  e.  ( A  \  1o )  <->  ( Y  e.  A  /\  Y  =/=  (/) ) )
3029simprbi 451 . . . . . . . . . . 11  |-  ( Y  e.  ( A  \  1o )  ->  Y  =/=  (/) )
3125, 30syl 16 . . . . . . . . . 10  |-  ( ph  ->  Y  =/=  (/) )
32 on0eln0 4628 . . . . . . . . . . 11  |-  ( Y  e.  On  ->  ( (/) 
e.  Y  <->  Y  =/=  (/) ) )
3328, 32syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( (/)  e.  Y  <->  Y  =/=  (/) ) )
3431, 33mpbird 224 . . . . . . . . 9  |-  ( ph  -> 
(/)  e.  Y )
35 omword1 6808 . . . . . . . . 9  |-  ( ( ( ( A  ^o  X )  e.  On  /\  Y  e.  On )  /\  (/)  e.  Y )  ->  ( A  ^o  X )  C_  (
( A  ^o  X
)  .o  Y ) )
3624, 28, 34, 35syl21anc 1183 . . . . . . . 8  |-  ( ph  ->  ( A  ^o  X
)  C_  ( ( A  ^o  X )  .o  Y ) )
37 omcl 6772 . . . . . . . . . . 11  |-  ( ( ( A  ^o  X
)  e.  On  /\  Y  e.  On )  ->  ( ( A  ^o  X )  .o  Y
)  e.  On )
3824, 28, 37syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  ^o  X )  .o  Y
)  e.  On )
3921simp3d 971 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( A  ^o  X ) )
40 onelon 4598 . . . . . . . . . . 11  |-  ( ( ( A  ^o  X
)  e.  On  /\  Z  e.  ( A  ^o  X ) )  ->  Z  e.  On )
4124, 39, 40syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  On )
42 oaword1 6787 . . . . . . . . . 10  |-  ( ( ( ( A  ^o  X )  .o  Y
)  e.  On  /\  Z  e.  On )  ->  ( ( A  ^o  X )  .o  Y
)  C_  ( (
( A  ^o  X
)  .o  Y )  +o  Z ) )
4338, 41, 42syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( A  ^o  X )  .o  Y
)  C_  ( (
( A  ^o  X
)  .o  Y )  +o  Z ) )
4420simprd 450 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  ^o  X )  .o  Y )  +o  Z
)  =  C )
4543, 44sseqtrd 3376 . . . . . . . 8  |-  ( ph  ->  ( ( A  ^o  X )  .o  Y
)  C_  C )
4636, 45sstrd 3350 . . . . . . 7  |-  ( ph  ->  ( A  ^o  X
)  C_  C )
47 oecl 6773 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
482, 3, 47syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( A  ^o  B
)  e.  On )
49 ontr2 4620 . . . . . . . 8  |-  ( ( ( A  ^o  X
)  e.  On  /\  ( A  ^o  B )  e.  On )  -> 
( ( ( A  ^o  X )  C_  C  /\  C  e.  ( A  ^o  B ) )  ->  ( A  ^o  X )  e.  ( A  ^o  B ) ) )
5024, 48, 49syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( ( A  ^o  X )  C_  C  /\  C  e.  ( A  ^o  B ) )  ->  ( A  ^o  X )  e.  ( A  ^o  B ) ) )
5146, 6, 50mp2and 661 . . . . . 6  |-  ( ph  ->  ( A  ^o  X
)  e.  ( A  ^o  B ) )
529simpld 446 . . . . . . 7  |-  ( ph  ->  A  e.  ( On 
\  2o ) )
53 oeord 6823 . . . . . . 7  |-  ( ( X  e.  On  /\  B  e.  On  /\  A  e.  ( On  \  2o ) )  ->  ( X  e.  B  <->  ( A  ^o  X )  e.  ( A  ^o  B ) ) )
5422, 3, 52, 53syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  e.  B  <->  ( A  ^o  X )  e.  ( A  ^o  B ) ) )
5551, 54mpbird 224 . . . . 5  |-  ( ph  ->  X  e.  B )
562adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  A  e.  On )
573adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  B  e.  On )
58 cnvimass 5216 . . . . . . . . . . . . . . 15  |-  ( `' G " ( _V 
\  1o ) ) 
C_  dom  G
591, 2, 3cantnfs 7613 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  ( `' G " ( _V 
\  1o ) )  e.  Fin ) ) )
604, 59mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G : B --> A  /\  ( `' G " ( _V  \  1o ) )  e.  Fin ) )
6160simpld 446 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : B --> A )
62 fdm 5587 . . . . . . . . . . . . . . . 16  |-  ( G : B --> A  ->  dom  G  =  B )
6361, 62syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  G  =  B )
6458, 63syl5sseq 3388 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  B
)
6564sselda 3340 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  x  e.  B )
66 onelon 4598 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
6757, 65, 66syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  x  e.  On )
68 oecl 6773 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  ^o  x
)  e.  On )
6956, 67, 68syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( A  ^o  x )  e.  On )
7061adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  G : B
--> A )
7170, 65ffvelrnd 5863 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( G `  x )  e.  A
)
72 onelon 4598 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  ( G `  x )  e.  A )  -> 
( G `  x
)  e.  On )
7356, 71, 72syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( G `  x )  e.  On )
74 ffn 5583 . . . . . . . . . . . . . . 15  |-  ( G : B --> A  ->  G  Fn  B )
75 elpreima 5842 . . . . . . . . . . . . . . 15  |-  ( G  Fn  B  ->  (
x  e.  ( `' G " ( _V 
\  1o ) )  <-> 
( x  e.  B  /\  ( G `  x
)  e.  ( _V 
\  1o ) ) ) )
7661, 74, 753syl 19 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( `' G " ( _V 
\  1o ) )  <-> 
( x  e.  B  /\  ( G `  x
)  e.  ( _V 
\  1o ) ) ) )
7776simplbda 608 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( G `  x )  e.  ( _V  \  1o ) )
78 dif1o 6736 . . . . . . . . . . . . . 14  |-  ( ( G `  x )  e.  ( _V  \  1o )  <->  ( ( G `
 x )  e. 
_V  /\  ( G `  x )  =/=  (/) ) )
7978simprbi 451 . . . . . . . . . . . . 13  |-  ( ( G `  x )  e.  ( _V  \  1o )  ->  ( G `
 x )  =/=  (/) )
8077, 79syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( G `  x )  =/=  (/) )
81 on0eln0 4628 . . . . . . . . . . . . 13  |-  ( ( G `  x )  e.  On  ->  ( (/) 
e.  ( G `  x )  <->  ( G `  x )  =/=  (/) ) )
8273, 81syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( (/)  e.  ( G `  x )  <-> 
( G `  x
)  =/=  (/) ) )
8380, 82mpbird 224 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  (/)  e.  ( G `  x ) )
84 omword1 6808 . . . . . . . . . . 11  |-  ( ( ( ( A  ^o  x )  e.  On  /\  ( G `  x
)  e.  On )  /\  (/)  e.  ( G `
 x ) )  ->  ( A  ^o  x )  C_  (
( A  ^o  x
)  .o  ( G `
 x ) ) )
8569, 73, 83, 84syl21anc 1183 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( A  ^o  x )  C_  (
( A  ^o  x
)  .o  ( G `
 x ) ) )
86 eqid 2435 . . . . . . . . . . . 12  |- OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' G " ( _V 
\  1o ) ) )
874adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  G  e.  S )
88 eqid 2435 . . . . . . . . . . . 12  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) ) `  k ) )  .o  ( G `  (OrdIso (  _E  ,  ( `' G " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( `' G " ( _V  \  1o ) ) ) `  k ) )  .o  ( G `  (OrdIso (  _E  ,  ( `' G " ( _V 
\  1o ) ) ) `  k ) ) )  +o  z
) ) ,  (/) )
891, 56, 57, 86, 87, 88, 65cantnfle 7618 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( ( A  ^o  x )  .o  ( G `  x
) )  C_  (
( A CNF  B ) `
 G ) )
90 cantnf.9 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A CNF  B
) `  G )  =  Z )
9190adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( ( A CNF  B ) `  G
)  =  Z )
9289, 91sseqtrd 3376 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( ( A  ^o  x )  .o  ( G `  x
) )  C_  Z
)
9385, 92sstrd 3350 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( A  ^o  x )  C_  Z
)
9439adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  Z  e.  ( A  ^o  X ) )
9524adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( A  ^o  X )  e.  On )
96 ontr2 4620 . . . . . . . . . 10  |-  ( ( ( A  ^o  x
)  e.  On  /\  ( A  ^o  X )  e.  On )  -> 
( ( ( A  ^o  x )  C_  Z  /\  Z  e.  ( A  ^o  X ) )  ->  ( A  ^o  x )  e.  ( A  ^o  X ) ) )
9769, 95, 96syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( (
( A  ^o  x
)  C_  Z  /\  Z  e.  ( A  ^o  X ) )  -> 
( A  ^o  x
)  e.  ( A  ^o  X ) ) )
9893, 94, 97mp2and 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( A  ^o  x )  e.  ( A  ^o  X ) )
9922adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  X  e.  On )
10052adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  A  e.  ( On  \  2o ) )
101 oeord 6823 . . . . . . . . 9  |-  ( ( x  e.  On  /\  X  e.  On  /\  A  e.  ( On  \  2o ) )  ->  (
x  e.  X  <->  ( A  ^o  x )  e.  ( A  ^o  X ) ) )
10267, 99, 100, 101syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  ( x  e.  X  <->  ( A  ^o  x )  e.  ( A  ^o  X ) ) )
10398, 102mpbird 224 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( `' G " ( _V 
\  1o ) ) )  ->  x  e.  X )
104103ex 424 . . . . . 6  |-  ( ph  ->  ( x  e.  ( `' G " ( _V 
\  1o ) )  ->  x  e.  X
) )
105104ssrdv 3346 . . . . 5  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  X
)
106 cantnf.f . . . . 5  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
1071, 2, 3, 4, 55, 26, 105, 106cantnfp1 7629 . . . 4  |-  ( ph  ->  ( F  e.  S  /\  ( ( A CNF  B
) `  F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  ( ( A CNF  B
) `  G )
) ) )
108107simprd 450 . . 3  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( ( ( A  ^o  X )  .o  Y )  +o  ( ( A CNF  B
) `  G )
) )
10990oveq2d 6089 . . 3  |-  ( ph  ->  ( ( ( A  ^o  X )  .o  Y )  +o  (
( A CNF  B ) `
 G ) )  =  ( ( ( A  ^o  X )  .o  Y )  +o  Z ) )
110108, 109, 443eqtrd 2471 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  C )
1111, 2, 3cantnff 7621 . . . 4  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
112 ffn 5583 . . . 4  |-  ( ( A CNF  B ) : S --> ( A  ^o  B )  ->  ( A CNF  B )  Fn  S
)
113111, 112syl 16 . . 3  |-  ( ph  ->  ( A CNF  B )  Fn  S )
114107simpld 446 . . 3  |-  ( ph  ->  F  e.  S )
115 fnfvelrn 5859 . . 3  |-  ( ( ( A CNF  B )  Fn  S  /\  F  e.  S )  ->  (
( A CNF  B ) `
 F )  e. 
ran  ( A CNF  B
) )
116113, 114, 115syl2anc 643 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  F )  e.  ran  ( A CNF  B
) )
117110, 116eqeltrrd 2510 1  |-  ( ph  ->  C  e.  ran  ( A CNF  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    \ cdif 3309    C_ wss 3312   (/)c0 3620   ifcif 3731   <.cop 3809   U.cuni 4007   |^|cint 4042   {copab 4257    e. cmpt 4258    _E cep 4484   Oncon0 4573   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873   iotacio 5408    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1stc1st 6339   2ndc2nd 6340  seq𝜔cseqom 6696   1oc1o 6709   2oc2o 6710    +o coa 6713    .o comu 6714    ^o coe 6715   Fincfn 7101  OrdIsocoi 7470   CNF ccnf 7608
This theorem is referenced by:  cantnflem4  7640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-seqom 6697  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-oexp 6722  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-cnf 7609
  Copyright terms: Public domain W3C validator