MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfs Structured version   Unicode version

Theorem cantnfs 7621
Description: Elementhood in the set of finitely supported functions from 
B to  A. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
cantnfs  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )

Proof of Theorem cantnfs
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 cantnfs.1 . . . . 5  |-  S  =  dom  ( A CNF  B
)
2 eqid 2436 . . . . . 6  |-  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin }  =  { g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }
3 cantnfs.2 . . . . . 6  |-  ( ph  ->  A  e.  On )
4 cantnfs.3 . . . . . 6  |-  ( ph  ->  B  e.  On )
52, 3, 4cantnfdm 7619 . . . . 5  |-  ( ph  ->  dom  ( A CNF  B
)  =  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin } )
61, 5syl5eq 2480 . . . 4  |-  ( ph  ->  S  =  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin } )
76eleq2d 2503 . . 3  |-  ( ph  ->  ( F  e.  S  <->  F  e.  { g  e.  ( A  ^m  B
)  |  ( `' g " ( _V 
\  1o ) )  e.  Fin } ) )
8 cnveq 5046 . . . . . 6  |-  ( g  =  F  ->  `' g  =  `' F
)
98imaeq1d 5202 . . . . 5  |-  ( g  =  F  ->  ( `' g " ( _V  \  1o ) )  =  ( `' F " ( _V  \  1o ) ) )
109eleq1d 2502 . . . 4  |-  ( g  =  F  ->  (
( `' g "
( _V  \  1o ) )  e.  Fin  <->  ( `' F " ( _V 
\  1o ) )  e.  Fin ) )
1110elrab 3092 . . 3  |-  ( F  e.  { g  e.  ( A  ^m  B
)  |  ( `' g " ( _V 
\  1o ) )  e.  Fin }  <->  ( F  e.  ( A  ^m  B
)  /\  ( `' F " ( _V  \  1o ) )  e.  Fin ) )
127, 11syl6bb 253 . 2  |-  ( ph  ->  ( F  e.  S  <->  ( F  e.  ( A  ^m  B )  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )
13 elmapg 7031 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( F  e.  ( A  ^m  B )  <-> 
F : B --> A ) )
143, 4, 13syl2anc 643 . . 3  |-  ( ph  ->  ( F  e.  ( A  ^m  B )  <-> 
F : B --> A ) )
1514anbi1d 686 . 2  |-  ( ph  ->  ( ( F  e.  ( A  ^m  B
)  /\  ( `' F " ( _V  \  1o ) )  e.  Fin ) 
<->  ( F : B --> A  /\  ( `' F " ( _V  \  1o ) )  e.  Fin ) ) )
1612, 15bitrd 245 1  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709   _Vcvv 2956    \ cdif 3317   Oncon0 4581   `'ccnv 4877   dom cdm 4878   "cima 4881   -->wf 5450  (class class class)co 6081   1oc1o 6717    ^m cmap 7018   Fincfn 7109   CNF ccnf 7616
This theorem is referenced by:  cantnfcl  7622  cantnfle  7626  cantnflt  7627  cantnff  7629  cantnf0  7630  cantnfrescl  7632  cantnfp1lem1  7634  cantnfp1lem2  7635  cantnfp1lem3  7636  cantnfp1  7637  oemapvali  7640  cantnflem1a  7641  cantnflem1b  7642  cantnflem1c  7643  cantnflem1d  7644  cantnflem1  7645  cantnflem3  7647  cantnf  7649  cnfcomlem  7656  cnfcom  7657  cnfcom2lem  7658  cnfcom3lem  7660  cnfcom3  7661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-seqom 6705  df-map 7020  df-oi 7479  df-cnf 7617
  Copyright terms: Public domain W3C validator