MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfsuc Unicode version

Theorem cantnfsuc 7387
Description: The value of the recursive function  H at a successor. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
cantnfval.3  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cantnfval.4  |-  ( ph  ->  F  e.  S )
cantnfval.5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
Assertion
Ref Expression
cantnfsuc  |-  ( (
ph  /\  K  e.  om )  ->  ( H `  suc  K )  =  ( ( ( A  ^o  ( G `  K ) )  .o  ( F `  ( G `  K )
) )  +o  ( H `  K )
) )
Distinct variable groups:    z, k, B    A, k, z    k, F, z    S, k, z   
k, G, z    k, K, z    ph, k, z
Allowed substitution hints:    H( z, k)

Proof of Theorem cantnfsuc
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfval.5 . . . 4  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
21seqomsuc 6485 . . 3  |-  ( K  e.  om  ->  ( H `  suc  K )  =  ( K ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ( H `  K
) ) )
32adantl 452 . 2  |-  ( (
ph  /\  K  e.  om )  ->  ( H `  suc  K )  =  ( K ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ( H `  K
) ) )
4 elex 2809 . . . 4  |-  ( K  e.  om  ->  K  e.  _V )
54adantl 452 . . 3  |-  ( (
ph  /\  K  e.  om )  ->  K  e.  _V )
6 fvex 5555 . . 3  |-  ( H `
 K )  e. 
_V
7 simpl 443 . . . . . . . 8  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  ->  u  =  K )
87fveq2d 5545 . . . . . . 7  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( G `  u
)  =  ( G `
 K ) )
98oveq2d 5890 . . . . . 6  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( A  ^o  ( G `  u )
)  =  ( A  ^o  ( G `  K ) ) )
108fveq2d 5545 . . . . . 6  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( F `  ( G `  u )
)  =  ( F `
 ( G `  K ) ) )
119, 10oveq12d 5892 . . . . 5  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( ( A  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) )  =  ( ( A  ^o  ( G `  K ) )  .o  ( F `  ( G `  K )
) ) )
12 simpr 447 . . . . 5  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
v  =  ( H `
 K ) )
1311, 12oveq12d 5892 . . . 4  |-  ( ( u  =  K  /\  v  =  ( H `  K ) )  -> 
( ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  v
)  =  ( ( ( A  ^o  ( G `  K )
)  .o  ( F `
 ( G `  K ) ) )  +o  ( H `  K ) ) )
14 fveq2 5541 . . . . . . . 8  |-  ( k  =  u  ->  ( G `  k )  =  ( G `  u ) )
1514oveq2d 5890 . . . . . . 7  |-  ( k  =  u  ->  ( A  ^o  ( G `  k ) )  =  ( A  ^o  ( G `  u )
) )
1614fveq2d 5545 . . . . . . 7  |-  ( k  =  u  ->  ( F `  ( G `  k ) )  =  ( F `  ( G `  u )
) )
1715, 16oveq12d 5892 . . . . . 6  |-  ( k  =  u  ->  (
( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  =  ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) ) )
1817oveq1d 5889 . . . . 5  |-  ( k  =  u  ->  (
( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z )  =  ( ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  z
) )
19 oveq2 5882 . . . . 5  |-  ( z  =  v  ->  (
( ( A  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) )  +o  z )  =  ( ( ( A  ^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  v
) )
2018, 19cbvmpt2v 5942 . . . 4  |-  ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  =  ( u  e. 
_V ,  v  e. 
_V  |->  ( ( ( A  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) )  +o  v
) )
21 ovex 5899 . . . 4  |-  ( ( ( A  ^o  ( G `  K )
)  .o  ( F `
 ( G `  K ) ) )  +o  ( H `  K ) )  e. 
_V
2213, 20, 21ovmpt2a 5994 . . 3  |-  ( ( K  e.  _V  /\  ( H `  K )  e.  _V )  -> 
( K ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ( H `  K
) )  =  ( ( ( A  ^o  ( G `  K ) )  .o  ( F `
 ( G `  K ) ) )  +o  ( H `  K ) ) )
235, 6, 22sylancl 643 . 2  |-  ( (
ph  /\  K  e.  om )  ->  ( K
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ( H `
 K ) )  =  ( ( ( A  ^o  ( G `
 K ) )  .o  ( F `  ( G `  K ) ) )  +o  ( H `  K )
) )
243, 23eqtrd 2328 1  |-  ( (
ph  /\  K  e.  om )  ->  ( H `  suc  K )  =  ( ( ( A  ^o  ( G `  K ) )  .o  ( F `  ( G `  K )
) )  +o  ( H `  K )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162   (/)c0 3468    _E cep 4319   Oncon0 4408   suc csuc 4410   omcom 4672   `'ccnv 4704   dom cdm 4705   "cima 4708   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876  seq𝜔cseqom 6475   1oc1o 6488    +o coa 6492    .o comu 6493    ^o coe 6494  OrdIsocoi 7240   CNF ccnf 7378
This theorem is referenced by:  cantnfle  7388  cantnflt  7389  cantnfp1lem3  7398  cantnflem1d  7406  cantnflem1  7407  cnfcomlem  7418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-recs 6404  df-rdg 6439  df-seqom 6476
  Copyright terms: Public domain W3C validator